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Abstract

In this Chapter we describe Scattering Representations, a signal representation built using
wavelet multiscale decompositions with a deep convolutional architecture. Its construction high-
lights the fundamental role of geometric stability in deep learning representations, and provides
a mathematical basis to study CNNs. We describe its main mathematical properties, its appli-
cations to computer vision, speech recognition and physical sciences, as well as its extensions
to Lie Groups and non-Euclidean domains. Finally, we discuss recent applications to modeling
high-dimensional probability densities.
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1 Introduction
Understanding the success of deep learning in challenging data domains such as computer vision,
speech recognition or natural language processing remains a major unanswered question, that requires
a tight integration of different theoretical aspects of the learning algorithm: approximation, estimation
and optimization. Amongst the many pieces responsible for such success, an important element
comes from the extra structure built into the neural architecture as a result of the input signal
structure. Images, sounds and text are signals defined over low-dimensional domains, such as grids or
their continuous Euclidean counterparts. In these domains one can articulate specific priors of data
distributions and tasks, which are leveraged in neural networks through convolutional layers.

This requires developing a signal processing theory of deep learning. In order to gain a mathemati-
cal understanding of the interplay between geometric properties of the input domain and convolutional
architectures, in this chapter we set aside the optimization and data-adaptivity pieces of the puzzle,
and take an axiomatic approach to build high-dimensional signal representations with prescribed
properties that make them amenable to complex recognition and classification tasks.

The first step is to develop the notion of geometric stability (Section 2). In essence, a signal
representation defined on a metric domain is geometrically stable if small perturbations in the metric
structure result in small changes in the output features. In Euclidean domains, geometric stability
can be expressed in terms of diffeomorphisms, which model many naturally occurring transformations
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in computer vision and speech recognition, such as changes in viewpoint, local translations, or pitch
transpositions.

Stability to the action of diffeomorphisms is achieved by separating scales, leading to multiscale
signal decompositions. Section 3 describes Scattering Representations on the Euclidean Translation
Group. First introduced in [Mal12], they combine wavelet multiscale decompositions with point-wise
modulus activation functions. We describe its main mathematical properties and applications to
computer vision. Scattering transforms are natural generalisations of multiscale representations of
stochastic processes, in which classical high-order polynomial moments are replaced by stable non-
linear transforms. Section 4 reviews Stochastic Scattering representations and their main applications
to multifractal analysis.

Euclidean Scattering representations serve as a mathematical basis to study CNNs on image and
audio domains. In many areas of physical and social sciences, however, data is rarely defined over
regular Euclidean domains. As it turns out, one can extend the formalism of geometric stability and
wavelet scattering representations on two important directions: first, to more general Lie Groups of
transformations (Section 5), and then to graphs and manifolds (Section 5.3).

We conclude this chapter by focusing on two important applications of scattering representations.
Thanks to their ability to capture key geometrical properties of high-dimensional signals with stability
guarantees, they may be used in unsupervised learning to perform high-dimensional density estimation
and implicit modeling, as described in Section 6.

2 Geometric Stability
This Section describes the notion of geometric stability in signal representations. We begin with the
Euclidean setting (subsection 2.1), where this stability is expressed in terms of diffeomorphisms of the
signal domain. We then discuss how to extend this notion to general metric domains in subsection
2.3, and then highlight the limitations of several standard high-dimensional signal representations in
regards to geometric stability (subsection 2.4).

2.1 Euclidean Geometric Stability
Consider a compact d-dimensional Euclidean domain 
 = [0; 1]d � Rd on which square-integrable
functions x 2 L2(
) are defined (for example, in image analysis applications, images can be thought
of as functions on the unit square 
 = [0; 1]2). We consider a generic supervised learning setting, in
which an unknown function f : L2(
)! Y is observed on a training set fxi 2 L2(
); fi = f(xi)gi2I :
In the vast majority of computer vision and speech analysis tasks, the unknown function f satisfies
crucial regularity properties expressed in terms of the signal domain 
.

Global Translation Invariance: Let Tvx(u) = x(u � v); u; v 2 
; be a translation operator1

acting on functions x 2 L2(
). Our first assumption is that the function f is either invariant, ie
f(Tvx) = f(x) for any x 2 L2(
) and v 2 
, or equivariant, ie f(Tvx) = Tvf(x), with respect to
translations, depending on the task. Translation invariance is typical in object classification tasks,
whereas equivariance arises when the output of the model is a space in which translations can act
upon (for example, in problems of object localization, semantic segmentation, or motion estimation).

The notion of global invariance/equivariance can be easily extended to other transformation groups
beyond translations. Section 5 discusses one such extension, to the group of rigid motions generated
by translations and rotations in 
.

However, global invariance is not a strong prior in the face of high-dimensional estimation. Ineed,
global transformation groups are typically low-dimensional; in particular, in signal processing, they
often correspond to subgroups of the affine group A�(
), with dimension O(d2). A much stronger
prior may be defined by specifying how the function f behaves under geometric perturbations of the
domain which are ‘nearby’ these global transformation groups.

1 Assuming periodic boundary conditions to ensure that the operation is well-defined over L2(
).
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Local deformations and scale separation: In particular, given a smooth vector field � : 
 ! 
, a
deformation by � acts on L2(
) as x� (u) := x(u� �(u)). Deformations can model local translations,
changes in point of view, rotations and frequency transpositions [BM13], and have been extensively
used as models of image variability in computer vision [JZL96, FGMR10, GDDM14]. Most tasks
studied in computer vision are not only translation invariant/equivariant, but also stable with respect
to local deformations [Mal16, BM13]. In tasks that are translation invariant, this prior may be
expressed informally as

jf(x� )� f(x)j � k�k; (1)

for all x; � . Here, k�k measures the distance of the associated diffeomorphism ’(u) := u� �(u) to the
translation group; we will see in next section how to specify this metric in the space of diffeomorphisms.
In other words, the target to be predicted does not change much if the input image is slightly deformed.
In tasks that are translation equivariant, we have jf(x� ) � f� (x)j � k�k instead. The deformation
stability property is much stronger than the global invariance one, since the space of local deformations
has high dimensionality, as opposed to the group of global invariants.

As we will see later, a key consequence of (1) is that long-range dependencies may be broken
into multi-scale local interaction terms, leading to hierarchical models in which spatial resolution is
progressively reduced. To illustrate this principle, denote by

q(z1; z2; v) = Prob(x(u) = z1 and x(u+ v) = z2) (2)

the joint distribution of two image pixels at an offset v from each other, where we have assumed a
stationary statistical model for natural images (hence q does not depend upon the location u). In
presence of long-range dependencies, this joint distribution will not be separable for any v. However,
the deformation stability prior states that q(z1; z2; v) � q(z1; z2; v(1 + �)) for small �. In other words,
whereas long-range dependencies indeed exist in natural images and are critical to object recogni-
tion, they can be captured and down-sampled at different scales. This principle of stability to local
deformations has been exploited in the computer vision community in models other than CNNs, for
instance, deformable parts models [FGMR10], as we will review next. In practice, the Euclidean
domain 
 is discretized using a regular grid with n points; the translation and deformation operators
are still well-defined so the above properties hold in the discrete setting.

2.2 Representations with Euclidean Geometric Stability
Motivated by the previous geometric stability prior, we are interested in building signal representations
that are compatible with such a prior. Specifically, suppose our estimation for f , the target function,
takes the form

f̂(x) := h�(x); �i ; (3)

where � : L2(
) ! RK corresponds to the signal representation and � 2 RK the classification or
regression coefficients, respectively. In a CNN, one would associate � with the operator that maps
the input to the last hidden layer, and � with the very last output layer of the network.

The linear relationship between �(x) and f̂(x) above implies that geometric stability in the repre-
sentation is sufficient to guarantee a predictor which is also geometrically stable. Indeed, if we assume
that

8 x; � ; k�(x)� �(x� )k . kxkk�k ; (4)

then by Cauchy-Schwartz, it follows that

jf̂(x)� f̂(x� )j � k�kk�(x)� �(x� )k . k�kkxkk�k :

This motivates the study of signal representations where one can certify (4), while ensuring that
� captures enough information so that k�(x) � �(x0)k is large whenever jf(x) � f(x0)j is large. In
this setting, a notorious challenge to achieving (4) while keeping enough discriminative power in �(x)
is to transform the high-frequency content of x in such a way that it becomes stable.

4



In recognition tasks, one may not only want to consider geometric stability, but also stability with
respect to the Euclidean metric in L 2(
) :

8 x; x0 2 L 2(
) ; k�( x) � �( x0)k . kx � x0k : (5)

This stability property ensures that additive noise in the input will not drastically change the feature
representation.

The stability desiderata (4) and (5) may also be interpreted in terms of robustness to adversarial
examples [SZS+ 13]. Indeed, the general setup of adversarial examples consists in producing small
perturbations x0 of a given input x (measured by appropriate norms) such thatjh�( x) � �( x0); � ij is
large. Stable representations certify that those adversarial examples cannot be obtained with small
additive or geometric perturbations.

2.3 Non-Euclidean Geometric Stability

Whereas Euclidean domains may be used to model many signals of interest, such as images, videos or
speech, a wide range of high-dimensional data across physical and social sciences is naturally de�ned
on more general geometries. For example, signals measured on social networks have rich geometrical
structure, encoding locality and multiscale properties, yet they on a non-Euclidean geometry. An
important question is thus how to extend the notion of geometrical stability to more general domains.

Deformations provide the natural framework to describe geometric stability in Euclidean domains,
but their generalization to non-Euclidean, non-smooth domains is not straightforward. Letx 2 L 2(X )
be a signal de�ned on a domainX . If X is embedded into a low-dimension Euclidean space
 � Rd,
such as a 2-surface within a three-dimensional space, then one can still de�ne meaningful deformations
on X via extrinsic deformations of 
 . Indeed, if � : Rd ! Rd is a smooth �eld and ' (v) = v � � (v)
the corresponding di�eomorphism (assumingk� k < 1=2), then we can de�ne x � 2 L 2(X� ) as

x � (u) := x(' � 1(u)) ; u 2 X :

Such deformation models have been studied in [KBPZ17] with applications in surface representation,
in which the notion of geometric stability relies on its ambient Euclidean structure.

In more general applications, however, we may be interested in intrinsic notions of geometric
stability, that do not necessarily rely on a pre-existent low-dimensional embedding of the domain.
The change of variables' (u) = u � � (u) de�ning the deformation can be seen as a perturbation of
the Euclidean metric in L 2(Rd). Indeed,

hx � ; y � i L 2 (Rd ;� ) =
Z

Rd
x � (u)y � (u)d� (u) =

Z

Rd
x(u)y (u)jI � r � (u)jd� (u) = hx; y i L 2 (Rd ; ~� ) ;

with d~� (u) = jI �r � (u)jd� (u), and jI �r � (u)j � 1 if kr � k is small, whereI is the identity. Therefore,
a possible way to extend the notion of deformation stability to general domainsL 2(X ) is to think of
X as a metric space and reason in terms of stability of� : L 2(X ) ! RK to metric changesin X . This
requires a representation that can be de�ned on generic metric spaces, as well as a criteria to compare
how close two metric spaces are. We will describe a general approach for discrete metric spaces based
on di�usion operators in Section 5.3.

2.4 Examples

2.4.1 Kernel Methods

Kernel methods refer to a general theory in the machine learning framework, whose main purpose
consists in embedding data in a high dimensional space, in order to express complex relationships in
terms of linear scalar products.
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For a generic input spaceZ (which can be thought of asZ = L 2(X ) corresponding to the previous
discussion), a feature map � : Z �! H maps data into a Hilbert space H with the reproducing
property: for each f 2 H and x 2 Z , f (x) = hf; �( x)i . Linear classi�cation methods access the
transformed data �( x) only through scalar products of the form [STC04]

h�( x); �( x0)i :

Rather than building the mapping explicitly, the popular �Kernel Trick" exploits Mercer's theorem.
It states that a continuous, symmetric and positive de�nite kernel K : Z � Z ! R de�nes an integral
operator of L 2(Z ), which diagonalizes in an orthonormal basis [MNY06]f � n gn of L 2(Z ), with non-
negative eigenvalues. As a result,K (x; x0) admits a representation

K (x; x0) =
X

n � 1

� n � n (x)� n (x0) ;

which yields
K (x; x0) = h�( x); �( x0)i ;

with �( x) = ( � 1=2
n � n (x))n . In Kernel methods it is thus su�cient to construct positive de�nite kernels

K on Z 2 in order to extend linear classi�cation tools to more complex relationships.
Despite their success and e�ectiveness in a number of machine learning tasks, the high dimensional

embeddings induced by kernel methods do not automatically enjoy the stability properties to additive
noise or deformations. The kernel needs to be chosen accordingly.Convolutional Kernels Networks
[MKHS14, BM17] have been developed to capture the geometric stability properties and o�er com-
petitive empirical performance to modern deep architectures. These kernels contrast with another
recent family of Neural Tangent Kernels [JGH18], which linearize a generic deep architecture around
its parameter initialization, and which do not o�er the same amount of geometric stability [BM19].

2.4.2 Power Spectra, Autocorrelation and Registration Invariants

Translation invariant representations can be obtained from registration, auto-correlation or Fourier
modulus operators. However, the resulting representations are not Lipschitz continuous to deforma-
tions.

A representation �( x) is translation invariant if it maps global translations x c(u) = x(u � c) by
c 2 Rd of any function x 2 L 2(Rd) to the same image:

8 x 2 L 2(Rd) ; 8 c 2 Rd ; �( x c) = �( x) : (6)

The Fourier transform modulus is an example of a translation invariant representation. Let x̂ (! )
be the Fourier transform of x(u) 2 L 2(Rd). Sincecx c(! ) = e� ic:! x̂ (! ), it follows that jcx cj = jx̂ j does
not depend uponc.

A Fourier modulus is translation invariant and stable to additive noise, but unstable to small
deformations at high frequencies [Mal12], as illustrated with the following dilation example. Let
� (u) = su denote a linear displacement �eld wherejsj is small, and let x(u) = ei�u � (u) be a modulated
version of a lowpass window� (u). Then the dilation x � (u) = L [� ]x(u) = x((1+ s)u) moves the central
frequency of x̂ from � to (1 + s)� . If � 2

� =
R

j! j2j �̂ (! )j2d! measures the frequency spread of� , then

� 2
x =

Z
j! � � j2jx̂(! )j2d! = � 2

� ;

and

� 2
x �

= (1 + s) � d
Z

(! � (1 + s)� )2jx̂((1 + s) � 1! )j2d!

=
Z

j(1 + s)( ! � � )j2jx̂(! )j2d! = (1 + s)2� 2
x :
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It follows that if the distance between the central frequencies ofx and x � , s� , is large compared to
their frequency spreads,(2 + s)� � , then the frequency supports ofx and x � are nearly disjoint and
hence

kjx̂ � j � j x̂ jk � k xk ;

which shows that �( x) = jx̂ j is not Lipschitz continuous to deformations, since� can be arbitrarily
large.

Figure 1: Dilation of a complex bandpass window. If� � � x s� 1, then the supports are nearly disjoint.

The autocorrelation of x

Rx (v) =
Z

x(u)x � (u � v)du

is also translation invariant: Rx = Rx c . SinceRx (v) = x ? x(v), with x(u) = x � (� u), it follows that
cRx (! ) = jx̂(! )j2 : The Plancherel formula thus proves that it has the same instabilities as a Fourier
transform:

kRx � Rx � k = (2 � ) � 1kjx̂ j2 � j x̂ � j2k :

Besides deformation instabilities, the Fourier modulus and the autocorrelation lose too much in-
formation. For example, a Dirac � (u) and a linear chirp eiu 2

are two signals having Fourier transforms
whose moduli are equal and constant. Very di�erent signals may not be discriminated from their
Fourier modulus.

A canonical invariant [KDGH07, Soa09] �( x) = x(u � a(x)) registersx 2 L 2(Rd) with an anchor
point a(x), which is translated when x is translated:

a(x c) = a(x) + c :

It thus de�nes a translation invariant representation: � x c = � x. For example, the anchor point
may be a �ltered maximum a(x) = arg max u jx ? h(u)j, for some �lter h(u). A canonical invariant
� x(u) = x(u � a(x)) carries more information than a Fourier modulus, and characterizesx up to a
global absolute position information [Soa09]. However, it has the same high-frequency instability as
a Fourier modulus transform. Indeed, for any choice of anchor pointa(x), applying the Plancherel
formula proves that

kx(u � a(x)) � x0(u � a(x0))k � (2� ) � 1 kjx̂ (! )j � j x̂0(! )jk :

If x0 = x � , the Fourier transform instability at high frequencies implies that � x = x(u � a(x)) is also
unstable with respect to deformations.
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3 Scattering on the Translation Group

This section reviews the Scattering transform on the translation group and its mathematical proper-
ties. Section 3.1 reviews windowed scattering transforms and its construction from Littlewood-Paley
wavelet decompositions. Section 3.2 introduces the scattering metric and reviews the scattering energy
conservation property, and Section 3.3 reviews the Lipschitz continuity property of scattering trans-
forms with respect to deformations. Section 3.4 describes algorithmic aspects and implementation,
and �nally Section 3.5 illustrates scattering properties in computer vision applications.

3.1 Windowed Scattering transform

A wavelet transform is de�ned by dilating a mother wavelet  2 L 2(Rd) with scale factors f aj gj 2 Z

for a > 1. In image processing applications one usually setsa = 2 , whereas audio applications need
smaller dilation factors, typically a � 21=8. Wavelets are not only dilated but also rotated along a
discrete rotation group G of Rd. As a result, a dilation by aj and a rotation by r 2 G of  produce

 a j r (u) = a� dj  (a� j r � 1u) : (7)

Wavelets are thus normalized inL 1(Rd), such that k a j r k1 = k k1, which means that their Fourier
transforms satisfy  ̂ a j r (! ) =  ̂ (aj r! ). In order to simplify notations, we denote � = aj r 2 aZ � G
and j� j = aj , and de�ne  � (u) = a� dj  (� � 1u). This notation will be used throughout the rest of the
Chapter.

Scattering operators can be de�ned for general mother wavelets, but of particular interest are the
complex wavelets that can be written as

 (u) = ei�u � (u) ;

where � is a lowpass window whose Fourier transform is real and has a bandwidth of the order of
� . As a result, after a dilation and a rotation, ^ � (! ) = �̂ (�! � � ) is centered at � � 1� and has a
support size proportional to j� j � 1. In Section 3.4.1 we shall specify the wavelet families used along
all numerical experiments.

A Littlewood-Paley wavelet transform is a redundant representation which computes the following
�lter bank, without subsampling:

8u 2 Rd; 8� 2 aZ � G ; W� x(u) = x ?  � (u) =
Z

x(v) � (u � v)dv : (8)

If x is real and the wavelet is chosen such that̂ is also real, thenW� � x = W� x � , which implies that
in that case one can assimilate a rotationr with its negative version � r into an equivalence class of
positive rotations G+ = G=f� 1g.

A wavelet transform with a �nite scale 2J only considers the subbands� satisfying j� j � 2J . The
low frequencies which are not captured by these wavelets are recovered by a lowpass �lter� J whose
spatial support is proportional to 2J : � J (u) = 2 � dJ � (2� J u). The wavelet transform at scale2J thus
consists in the �lter bank

WJ x = f x ? � J ; (W� x) � 2 � J g ;

where � J = f aj r : r 2 G+ ; j� j � 2J g. Its norm is de�ned as

kWJ xk2 = kx ? � J k2 +
X

� 2 � J

kW� xk2 :

WJ is thus a linear operator from L 2(Rd) to a product space generated by copies ofL 2(Rd). It de�nes
a frame of L 2(Rd), whose bounds are characterized by the following Littlewood-Paley condition:
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Proposition 3.1. If there exists � > 0 such that for almost all ! 2 Rd and all J 2 Z

1 � � � j �̂ (2J ! )j2 +
1
2

X

j � J

X

r 2 G

j  ̂ (2j r! )j2 � 1 ;

then WJ is a frame with bounds given by1 � � and 1:

(1 � � )kxk2 � kW J xk2 � k xk2 ; x 2 L 2(Rd) : (9)

In particular, this Littlewood-Paley condition implies that  ̂ (0) = 0 and hence that the wavelet
must have at least a vanishing moment. When� = 0 , the wavelet decomposition preserves the
Euclidean norm and we say that it is unitary.

Wavelet coe�cients are not translation invariant but translate as the input is translated, and their
average

R
W� x(u)du does not produce any information since wavelets have zero mean. A translation

invariant measure which is also stable to the action of di�eomorphisms can be extracted out of each
wavelet sub-band � , by introducing a non-linearity which restores a non-zero, informative average
value. This is for instance achieved by computing the complex modulus and averaging the result

Z
jx ?  � j(u)du : (10)

Although many other choices of non-linearity are algorithmically possible, the complex modulus pre-
serves the signal energy and enables overall energy conservation; see next Section. We will discuss in
Section ?? how the choice of non-linearity is informed by geometric stability, and �nally in Section 7
how half-recti�ed alternatives provide further insights into the signal through the Phase Harmonics.

The information lost by the averaging in (10) is recovered by a new wavelet decompositionfj x ?
 � j ?  � 0g� 02 � J of jx ?  � j, which produces new invariants by iterating the same procedure. Let
U[� ]x = jx ?  � j denote the wavelet modulus operator corresponding to the subband� . Any sequence
p = ( � 1; � 2; :::; � m ) de�nes a path, i.e, the ordered product of non-linear and non-commuting operators

U[p]x = U[� m ] ::: U[� 2] U[� 1]x = j jj x ?  � 1 j ?  � 2 j ::: j ?  � m j ;

with U[; ]x = x.
Similarly as with frequency variables, one can manipulate path variablesp = ( � 1; : : : ; � m ) in

a number of ways. The scaling and rotation by al g 2 aZ � G+ of a path p is denoted al gp =
(al g� 1; : : : ; al g� m ), and the concatenation of two paths is written p + p0 = ( � 1; : : : ; � m ; � 0

1; : : : ; � 0
m 0).

Many applications in image and audio recognition require locally translation invariant represen-
tations, but which keep spatial or temporal information beyond a certain scale2J . A windowed
scattering transform computes a locally translation invariant representation by applying a lowpass
�lter at scale 2J with � 2J (u) = 2 � 2J � (2� J u).

De�nition 3.2. For each pathp = ( � 1; : : : ; � m ) with � i 2 � J and x 2 L 1(Rd) we de�ne the windowed
scattering transform as

SJ [p]x(u) = U[p]x ? � 2J (u) =
Z

U[p]x(v)� 2J (u � v) dv ;

A Scattering transform has the structure of a convolutional network, but its �lters are given by
wavelets instead of being learnt. Thanks to this structure, the resulting transform is locally translation
invariant and stable to deformations, as will be discussed in 3.3. The scattering representation enjoys
several appealing properties described in the following sections.
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Figure 2: Convolutional structure of the windowed scattering transform. Each layer is computed from
the previous by applying a wavelet modulus decompositionU on each envelopeU[p]x. The outputs
of each layer are obtained via a lowpass �lter� J .

3.2 Scattering metric and Energy Conservation

The windowed scattering representation is obtained by cascading a basic propagator operator,

UJ x = f x ? � J ; (U[� ]x) � 2 � J g : (11)

The �rst layer of the representation applies UJ to the input function, whereas successive layers are
obtained by applying UJ to each output U[p]x. SinceU[� ]U[p] = U[p + � ] and U[p]x ? � J = SJ [p]x ,
it follows that

UJ U[p]x = f SJ [p]x ; (U[p + � ]x) � 2 � J g : (12)

If � m
J denotes the set of paths of length ororder m, it follows from (12) that the (m + 1) -th layer

given by � m +1
J is obtained from the previous layer via the propagatorUJ . We denote PJ the set of

paths of any order up to scale2J , PJ = [ m � m
J .

The propagator UJ is non-expansive, since the wavelet decompositionWJ is non-expansive from
(9) and the modulus is also non-expansive. As a result,

kUJ x � U J x0k2 = kx ? � J � x0? � J k2 +
X

� 2 � J

kjW� xj � j W� x0jk2 � k x � x0k2 :

Moreover, if the wavelet decomposition is unitary, then the propagatorUJ is also unitary.
For any path set 
 , the Euclidean norm de�ned by the scattering coe�cients SJ [p] ; p 2 
 is

kSJ [
] xk2 =
X

p2 


kSJ [p]xk2 :

SinceSJ [PJ ] is constructed by cascading the non-expansive operatorUJ , it follows that SJ [PJ ] is also
non-expansive:

Proposition 3.3. The windowed scattering transform is non-expansive:

8x; x0 2 L 2(Rd) ; kSJ [PJ ]x � SJ [PJ ]x0k � k x � x0k : (13)

The windowed scattering thus de�nes a metric which is continuous with respect to theL 2(Rd)
euclidean metric, and thus it is stable to additive noise.

10



Let us now consider the case where the wavelet decomposition is unitary, ie� = 0 in (9). One can
easily verify by induction on the path order m = jpj that

8 m ; kxk2 =
X

j pj<m

kSJ [p]xk2 +
X

j pj= m

kU[p]xk2 :

This decomposition expresses the signal energykxk2 in terms of coe�cients captured by the �rst
m layers of the scattering network, and a residual energyR J; x (m) :=

P
p2P J ;jpj= m kU[p]xk2. An

important question with practical implications is to understand the energy decay R J; x (m) as m
grows, since this determines how many layers of processing are e�ectively needed to represent the
input. In particular, the Scattering representation is energy-preserving if limm !1 R J; x (m) = 0 .

This is established under mild assumptions on the wavelet decomposition for the univariate case
x 2 L 2(R) in [Wal17]:

Theorem 3.4 ([Wal17], Theorem 3.1). Let f  j gj 2 Z be a family of wavelets satisfying the Littlewood-
Paley condition (9), and such that

8 j; ! > 0 ; j ̂ j (� ! )j � j  ̂ j (! )j ;

with strict inequality for each ! for at least one scale. Finally, we assume for some� > 0

 ̂ (! ) = O(j! j1+ � ) :

Then for any J 2 Z, there exists r > 0; a > 1 such that for all m � 2 and f 2 L 2(R) it holds

R J; x (m) � k xk2 � k x ? � ra m k2 ; (14)

where � s is the Gaussian window� s(t) =
p

�s exp(� (�st )2).

This result establishes in particular the energy conservation, owing to the square integrability of
x̂ 2 L 2(R). But, importantly, it also provides a quantitative rate in which the energy decays within the
network: the energy in the input signal carried by frequencies around2k disappears afterO(k) layers,
leading to exponential energy decay. An earlier version of the energy conservation was established
in [Mal12] for general input dimensions, but under more restrictive admissibility conditions for the
wavelet, and without the rate of convergence.

A similar energy conservation result with also exponential convergence rate has been established for
extensions of the scattering transform, where the wavelet decomposition is replaced by other frames.
[CL17] studies energy conservation foruniform covering frames, obtaining exponential convergence
too. [WGB17] generalise this result to more general frames that are also allowed to vary from one
layer to the next.

3.3 Local Translation Invariance and Lipschitz Continuity to Deformations

The windowed scattering metric de�ned in the previous section is non-expansive, which gives sta-
bility to additive perturbations. In this Section we review its geometric stability to the action of
deformations, and its asymptotic translation invariance, as the localization scale2J increases.

Each choice of such localization scale de�nes a metricdJ (x ; x0) := kSJ [PJ ]x � SJ [PJ ]x0k. An
induction argument over the non-expansive Littlewood-Paley property (9) shows that the limit of dJ

as J ! 1 is well de�ned thanks to the following non-expansive property:

Proposition 3.5 ([Mal12], Prop 2.9). For all x ; x0 2 L 2(Rd) and J 2 Z,

kSJ +1 [PJ +1 ]x � SJ +1 [PJ +1 ]x0k � k SJ [PJ ]x � SJ [PJ ]x0k :

11



As a result, the sequence(kSJ [PJ ]x � SJ [PJ ]x0k)J is positive and non-increasing asJ increases,
and hence it converges.

In fact, under mild assumptions, this limit metric is translation invariant:

Theorem 3.6 ([Mal12], Theorem 2.10). Let xv (u) = x(u� v). Then for admissible scattering wavelets
satisfying the assumptions of Theorem (3.4) it holds

8x 2 L 2(Rd) ; 8c 2 Rd ; lim
J !1

kSJ [PJ ]x � SJ [PJ ]xv k = 0 : (15)

for d = 1 .

Remark 3.7. This result is proven in [Mal12] for general dimensionsd under stronger assumptions
on the wavelets (admissibility condition (2.28) in [Mal12]). However, these stronger assumptions may
not be necessary, by extending the result in [Wal17] to arbitraryd.

Remark 3.8. [WB17] describes an interesting extension of Theorem 3.6 which holds for more general
decomposition frames beyond wavelets, based on the notion ofvertical translation invariance. This
refers to the asymptotic translation invariance enjoyed bym-th layer coe�cients of the network, as m
grows.

The translation invariance of the overall representation is based on two fundamental properties:
(i) the equivariance of wavelet modulus decomposition operators with respect to translation,UJ Tv x =
Tv UJ x, and (ii) the invariance provided by the local averaging operator AJ x := x ? � J . Indeed,
scattering coe�cients up to order m are obtained by composingUJ up to m times followed by AJ . It
follows that the translation invariance measured at orderm is expressed as

kSJ [� m
J ]Tv x � SJ [� m

J ]xk = kAJ Tv U[� m
J ]x � AJ U[� m

J ]xk � k U[� m
J ]xkkAJ Tv � AJ k :

Besides asymptotic translation invariance, the windowed scattering transform de�nes a stable
metric with respect to the action of di�eomorphisms, which can model non-rigid deformations. A
di�eomorphism maps a point u 2 Rd to u � � (u), where � (u) is a vector displacement �eld satisfying
kr � k1 < 1, where kr � k is the operator norm. As described in Section 2.1, it acts on functions
x 2 L 2(Rd) by composition: x � (u) = x(u � � (u)) . The following central theorem computes an upper
bound of kSJ [PJ ]x � � SJ [PJ ]xk. For that purpose, we assume an admissible scattering wavelet2, and
we de�ne the auxiliary norm

kU[PJ ]xk1 =
X

m � 0

kU[� m
J ]xk :

Theorem 3.9 ([Mal12], Theorem 2.12). There existsC such that everyx 2 L 2(Rd) with kU[PJ ]xk1 <
1 and � 2 C2(Rd) with kr � k1 � 1=2 satisfy

kSJ [PJ ]x � � SJ [PJ ]xk � CkU[PJ ]xk1K (� ) ; (16)

with

K (� ) = 2 � J k� k1 + kr � k1 max
�

1; log
supu;u 0 j� (u) � � (u0)j

kr � k1

�
+ kH� k1 ;

and for all m � 0, if PJ;m = [ n<m � n
J , then

kSJ [PJ;m ]x � � SJ [PJ;m ]xk � CmkxkK (� ) : (17)
2Again, as mentioned in Remark 3.7, such admissible wavelet conditions can be relaxed by extending the energy

conservation results from [Wal17].
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This theorem shows that a di�eomorphism produces in the scattering domain an error bounded
by a term proportional to 2� J k� k1 , which corresponds to the local translation invariance, plus a
deformation error proportional to kr � k1 . Whereas rigid translations Tv commute with all the con-
volutional or point-wise operators de�ning the scattering representation, non-rigid deformations no
longer commute with convolutions. The essence of the proof is thus to control thecommutation error
between the wavelet decomposition and the deformation. IfL � denotes the deformation operator
L � x = x � , [Mal12] proves that

k[WJ ; L � ]k = kWJ L � � L � WJ k . kr � k ;

thanks to the scale separation properties of wavelet decompositions.
The norm kU[PJ ]xk1 measures the decay of the scattering energy across depth. Again, in the

univariate case it is shown in [Wal17] that

8 m ; kU[� m
J ]xk �

� Z
jx̂ (! )j2hm (! )d!

� 1=2

;

with hm (! ) = 1 � exp(� 2(!= (ram ))2) and a > 1. Denote by

F =
�

x;
Z

jx̂ (! )j2 log(1 + j! j)d! < 1
�

the space of functions whose Fourier transform is square integrable against a logarithmic scaling. This
corresponds to a logarithmic Sobolev class of functions having an average modulus of continuity in
L 2(Rd). In that case, for x 2 F , we verify that

Proposition 3.10. If x 2 F , then kU[PJ ]xk1 < 1 :

This implies that the geometric stability bound from Theorem 3.9 applies to such functions, with an
upper bound that does not blow up with depth. When x has compact support, the following corollary
shows that the windowed scattering metric is Lipschitz continuous to the action of di�eomorphisms:

Corollary 3.11 ([Mal12], Corollary 2.15). For any compact set
 � Rd there existsC such that for
all x 2 L 2(Rd) supported in 
 with kU[PJ ]xk1 < 1 and for all � 2 C2(Rd) with kr � k1 � 1=2, then

kSJ [PJ;m ]x � � SJ [PJ;m ]xk � CkU[PJ ]xk1
�
2� J k� k1 + kr � k1 + kH� k1

�
: (18)

The translation error term, proportional to 2� J k� k1 , can be reduced to a second-order error term,
2� 2J k� k2

1 , by considering a �rst order Taylor approximation of each SJ [p]x [Mal12].
As mentioned earlier, [CL17] and [WB17] developed extensions of scattering representations by

replacing scattering wavelets with other decomposition frames, also establishing deformation stability
bounds. However, an important di�erence between these results and Theorem 3.9 is that no bandlim-
ited assumption is made on the input signalx, but rather the weaker condition that kU[PJ ]xk1 < 1 .
For appropriate wavelets leading to exponential energy decay, such quantity is bounded forx 2 L 1 \ L 2.
Finally, another relevant work that connected the above geometric stability results with kernel methods
is [BM17], in which a Convolutional Kernel is constructed that enjoys provable deformation stability.

3.4 Algorithms

We now describe algorithmic aspects of the scattering representation, in particular the choice of
scattering wavelets and the overall implementation as a speci�c CNN architecture.
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3.4.1 Scattering Wavelets

The Littlewood-Paley wavelet transform of x, f x ?  � (u)g� , de�ned in (8), is a redundant transform
with no orthogonality property. It is stable and invertible if the wavelet �lters  ̂ � (! ) cover the whole
frequency plane. On discrete images, to avoid aliasing, one may only capture frequencies in the circle
j! j � � inscribed in the image frequency square. Most camera images have negligible energy outside
this frequency circle.

As mentioned in Section 3.1, one typically considers near-analytic wavelets, meaning thatj ̂ (� ! )j �
j ̂ (! )j for ! lying on a prede�ned half-space ofR2. The reason is hinted in Theorem 3.4, namely the
complex envelop of analytic wavelets is smoother than that of a real wavelet, and therefore more
energy will be captured at earlier layers of the scattering representation.

Figure 3: Complex Morlet wavelet. (a): Real part of  (u). (b): Imaginary part of  (u). (c): Fourier
modulus j ̂ (! )j.

Let u:u0 and juj denote the inner product and norm in R2. A Morlet wavelet  is an example of
complex wavelet given by

 (u) = � (eiu:� � � ) e�j u j2 =(2 � 2 ) ;

where � � 1 is adjusted so that
R

 (u) du = 0 . Its real and imaginary parts are nearly quadrature
phase �lters. Figure 3 shows the Morlet wavelet with � = 0 :85 and � = 3 �= 4, used in all classi�cation
experiments. The Morlet wavelet  shown in Figure 3 together with � (u) = exp( �j uj2=(2� 2))=(2�� 2)
for � = 0 :7 satisfy (9) with � = 0 :25.

Cubic spline wavelets are an important family of unitary wavelets satisfying the Littlewood-Paley
condition (9) with � = 0 . They are obtained from a cubic-spline orthogonal Battle-Lemairé wavelet,
de�ned from the conjugate mirror �lter [Mal08]

ĥ(! ) =

s
S8(! )

28S8(2! )
; with Sn (! ) =

1X

k= �1

1
(! + 2k� )n ;

which in the casen = 8 simpli�es to the expression

S8(2! ) =
5 + 30 cos2(! ) + 30 sin2(! ) cos2(! )

10528 sin8(! )
+

70 cos4(! ) + 2 sin 4(! ) cos2(! ) + 2 =3 sin6(! )
10528 sin8(! )

:

In two dimensions,  ̂ is de�ned as a separable product in frequency polar coordinates! = j! j� ,
where � is a unit vector:

8j! j; � 2 R+ � S1 ;  ̂ (! ) = ^ 1(j! j)
 (� ) ;

with 
 designed such that
8� ;

X

r 2 G+

j
 (r � 1� )j2 = 1 :

Figure 4 shows the corresponding two-dimensional �lters obtained with spline wavelets, by setting
both  ̂ 1 and 
 to be cubic splines.
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Figure 4: Complex cubic Spline wavelet. (a): Real part of (u). (b): Imaginary part of  (u). (c):
Fourier modulus j ̂ (! )j.

3.4.2 Fast Scattering Computations with Scattering Convolutional Network

A scattering representation is implemented with a CNN having a very speci�c architecture. As opposed
to standard CNNs, output scattering coe�cients are produced by each layer as opposed to the last
layer.Filters are not learned from data but are prede�ned wavelets. If p = ( � 1; :::; � m ) is a path of
length m then the windowed scattering coe�cients SJ [p]x(u) of order m are computed at the layerm
of a convolution network which is speci�ed.

We describe a fast scattering implementation over frequency decreasing paths, where most of the
scattering energy is concentrated. A frequency decreasing pathp = (2 � j 1 r 1; :::; 2� j m r m ) satis�es
0 < j k � j k+1 � J . If the wavelet transform is computed over K rotation angles then the total
number of frequency-decreasing paths of lengthm is K m

� J
m

�
. Let N be the number of pixels of the

image x. Since� 2J is a low-pass �lter scaled by2J , SJ [p]x(u) = U[p]x ? � 2J (u) is uniformly sampled
at intervals � 2J , with � = 1 or � = 1=2. Each SJ [p]x is an image with � � 22� 2J N coe�cients. The
total number of coe�cients in a scattering network of maximum depth m is thus

P = N � � 2 2� 2J
mX

m =0

K m
�

J
m

�
: (19)

If m = 2 then P ' � � 2 N 2� 2J K 2J 2=2. It decreases exponentially when the scale2J increases.
Algorithm 1 describes the computations of scattering coe�cients on setsPm

# of frequency de-
creasing paths of length m � m. The initial set P0

# = f;g corresponds to the original image
U[; ]x = x. Let p + � be the path which begins by p and ends with � 2 P . If � = 2 � j r then
U[p+ � ]x(u) = jU[p]x ?  � (u)j has energy at frequencies mostly below2� j � . To reduce computations
we can thus subsample this convolution at intervals� 2j , with � = 1 or � = 1=2 to avoid aliasing.

At the layer m there are K m
� J

m

�
propagated signalsU[p]x with p 2 P m

# . They are sampled
at intervals � 2j m which depend on p. One can verify by induction on m that the layer m has a
total number of samples equal to � � 2 (K=3)m N . There are alsoK m

� J
m

�
scattering signals S[p]x

but they are subsampled by 2J and thus have much less coe�cients. The number of operation to
compute each layer is therefore driven by theO((K=3)m N logN ) operations needed to compute the
internal propagated coe�cients with FFT's. For K > 3, the overall computational complexity is thus
O((K=3)m N logN ).

The package Kymatio [AAE+ 18] provides a modern implementation of scattering transforms lever-
aging e�cient GPU-optimized routines.

3.5 Empirical Analysis of Scattering Properties

To illustrate the properties of scattering representations, let us describe a visualization procedure.
For a �xed position u, windowed scattering coe�cients SJ [p]x(u) of order m = 1 ; 2 are displayed as
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Algorithm 1 Fast Scattering Transform

for m = 1 to m do
for all p 2 P m � 1

# do
Output SJ [p]x(� 2J n) = U[p]x ? � 2J (� 2J n)

end for
for all p + � m 2 P m

# with � m = 2 � j m r m do
Compute

U[p + � m ]x(� 2j m n) = jU[p]x ?  � m (� 2j m n)j

end for
end for
for all p 2 P max

# do
Output SJ [p]x(� 2J n) = U[p]x ? � 2J (� 2J n)

end for

Figure 5: To display scattering coe�cients, the disk covering the image frequency support is parti-
tioned into sectors 
[ p], which depend upon the pathp. (a): For m = 1 , each
[ � 1] is a sector rotated
by r 1 which approximates the frequency support of ̂ � 1 . (b): For m = 2 , all 
[ � 1; � 2] are obtained by
subdividing each 
[ � 1].
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Figure 6: (a) Two images x(u). (b) Fourier modulus jx̂(! )j. (c) First order scattering coe�cients
SJ x[� 1] displayed over the frequency sectors of Figure 5(a). They are the same for both images. (d)
Second order scattering coe�cients SJ x[� 1; � 2] over the frequency sectors of Figure 5(b). They are
di�erent for each image.

piecewise constant images over a disk representing the Fourier support of the imagex. This frequency
disk is partitioned into sectors f 
[ p]gp2P m indexed by the path p. The image value isSJ [p]x(u) on
the frequency sectors
[ p], shown in Figure 5.

For m = 1 , a scattering coe�cient SJ [� 1]x(u) depends upon the local Fourier transform energy
of x over the support of  ̂ � 1 . Its value is displayed over a sector
[ � 1] which approximates the
frequency support of  ̂ � 1 . For � 1 = 2 � j 1 r 1, there are K rotated sectors located in an annulus of
scale2� j 1 , corresponding to eachr 1 2 G, as shown by Figure 5(a). Their area are proportional to
k � 1 k2 � K � 1 2� j 1 .

Second order scattering coe�cients SJ [� 1; � 2]x(u) are computed with a second wavelet transform
which performs a second frequency subdivision. These coe�cients are displayed over frequency sectors

[ � 1; � 2] which subdivide the sectors
[ � 1] of the �rst wavelets  ̂ � 1 , as illustrated in Figure 5(b). For
� 2 = 2 � j 2 r 2, the scale 2j 2 divides the radial axis and the resulting sectors are subdivided intoK
angular sectors corresponding to the di�erent r 2. The scale and angular subdivisions are adjusted so
that the area of each
[ � 1; � 2] is proportional to kj � 1 j ?  � 2 k2.

A windowed scattering SJ is computed with a cascade of wavelet modulus operatorsU de�ned
in (11), and its properties thus depend upon the wavelet transform properties. Sections 3.3 and 3.2
gave conditions on wavelets to de�ne a scattering transform which is non-expansive and preserves
the signal norm. The scattering energy conservation shows thatkSJ [p]xk decreases quickly as the
length of p increases, and is non-negligible only over a particular subset of frequency-decreasing paths.
Reducing computations to these paths de�nes a convolution network with much fewer internal and
output coe�cients.

Theorem 3.4 proves that the energy captured by them-th layer of the scattering convolutional
network,

P
j pj= m kSJ [p]xk2, converges to0 as m ! 1 . The scattering energy conservation also

proves that the more sparse the wavelet coe�cients, the more energy propagates to deeper layers.
Indeed, when2J increases, one can verify that at the �rst layer, SJ [� 1]x = jx ?  � 1 j ? � 2J converges to
k� k2 kx ? � k2

1. The more sparsex ? � , the smaller kx ? � k1 and hence the more energy is propagated
to deeper layers to satisfy the global energy conservation of Theorem 3.4.

Figure 6 shows two images having same �rst order scattering coe�cients, but the top image is
piecewise regular and hence has wavelet coe�cients which are much more sparse than the uniform
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Table 1: Percentage of energy
P

p2P m
#

kSJ [p]xk2=kxk2 of scattering coe�cients on frequency-
decreasing paths of lengthm, depending uponJ . These average values are computed on the Caltech-
101 database, with zero mean and unit variance images.

J m = 0 m = 1 m = 2 m = 3 m = 4 m � 3
1 95.1 4.86 - - - 99.96
2 87.56 11.97 0.35 - - 99.89
3 76.29 21.92 1.54 0.02 - 99.78
4 61.52 33.87 4.05 0.16 0 99.61
5 44.6 45.26 8.9 0.61 0.01 99.37
6 26.15 57.02 14.4 1.54 0.07 99.1
7 0 73.37 21.98 3.56 0.25 98.91

texture at the bottom. As a result the top image has second order scattering coe�cients of larger
amplitude than at the bottom. Higher-order coe�cients are not displayed because they have a neg-
ligible energy. For typical images, as in the CalTech101 dataset [FFFP04], Table 1 shows that the
scattering energy has an exponential decay as a function of the path lengthm. Scattering coe�-
cients are computed with cubic spline wavelets, which de�ne a unitary wavelet transform and satisfy
the scattering admissibility condition for energy conservation. As expected, the energy of scattering
coe�cients converges to 0 as m increases, and it is already below1% for m � 3.

The propagated energykU[p]xk2 decays becauseU[p]x is a progressively lower frequency signal
as the path length increases. Indeed, each modulus computes a regular envelop of oscillating wavelet
coe�cients. The modulus can thus be interpreted as a non-linear �demodulator� which pushes the
wavelet coe�cient energy towards lower frequencies. As a result, an important portion of the energy
of U[p]x is then captured by the low pass �lter � 2J which outputs SJ [p]x = U[p]x ? � 2J . Hence fewer
energy is propagated to the next layer.

Another consequence is that the scattering energy propagates only along a subset of frequency
decreasing paths. Since the envelopejx ? � j is more regular thanx ? � , it follows that jx ? � (u)j ? � 0

is non-negligible only if  � 0 is located at lower frequencies than � , and hence if j� 0j < j� j. Iterating
on wavelet modulus operators thus propagates the scattering energy along frequency-decreasing paths
p = ( � 1; :::; � m ) where j� k j < j� k � 1j for 1 � k < m . We denote byPm

# the set of frequency decreasing
(or equivalently scale increasing) paths of lengthm. Scattering coe�cients along other paths have
a negligible energy. This is veri�ed by Table 1 which shows not only that the scattering energy is
concentrated on low-order paths, but also that more than99%of the energy is absorbed by frequency-
decreasing paths of lengthm � 3. Numerically, it is therefore su�cient to compute the scattering
transform along frequency-decreasing paths. It de�nes a much smaller convolution network. Section
3.4.2 shows that the resulting coe�cients are computed with O(N logN ) operations.

Signal Recovery versus Energy Conservation: Preserving energy does not imply that the
signal information is preserved. Since a scattering transform is calculated by iteratively applyingU,
inverting SJ requires to invert U. The wavelet transform W is a linear invertible operator, so inverting
Uz = f z ? � 2J ; jz ?  � jg� 2P amounts to recovering the complex phases of wavelet coe�cients removed
by the modulus. The phase of Fourier coe�cients can not be recovered from their modulus, but
wavelet coe�cients are redundant, as opposed to Fourier coe�cients. For particular wavelets, it has
been proved that the phase of wavelet coe�cients can be recovered from their modulus, and thatU
has a continuous inverse [Wal12].

Still, one can not exactly invert SJ because we discard information when computing the scattering
coe�cients SJ [p]x = U[p]x ? � 2J of the last layer Pm . Indeed, the propagated coe�cients jU[p]x ?  � j
of the next layer are eliminated, because they are not invariant and have a negligible total energy. The
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Figure 7: Signal Reconstruction from Scattering coe�cients SJ x with J = log N . Top: original
images, Middle: reconstruction from only �rst-order coe�cients. Bottom: reconstruction using �rst
and second-order coe�cients.

number of such coe�cients is larger than the total number of scattering coe�cients kept at previous
layers. Initializing the inversion by considering that these small coe�cients are zero produces an error.
This error is further ampli�ed as the inversion of U progresses across layers fromm to 0.

Yet, under some structural assumptions on the signalx, it is possible to recover the signal from
its scattering coe�cients z = SJ x. For instance, if x admits a sparse wavelet decomposition, [BM18]
shows that important geometrical information of x is preserved inSJ x. Figure 7 illustrates the signal
recovery using eitherm = 1 or m = 2 with J = log N . The recovery is obtained using a gradient-
descent on the energyE(x) = kSJ x � zk2 described in Section 6. In this case, �rst-order scattering
provides a collection of`1 norms fk x ?  � k1g� , which recover the overall regularity of the signal, but
fail to reconstruct its geometry. Adding second-order coe�cients results in O(log N 2) coe�cients and
substantially improves the reconstruction quality. In essence, the sparsity in these images creates no
scale interactions on a large subset of scattering coe�cients, which reduces the loss of information
caused by the removal of the wavelet phases.

For natural images with weaker sparsity, Figure 8 shows reconstructions from second-order scatter-
ing coe�cients for di�erent values of J , using the same recovery algorithm. When the scale2J is such
that the number of scattering coe�cients is comparable with the dimensionality of x, we observe good
perceptual quality. When dim(SJ x) � dim(x), scattering coe�cients de�ne an underlying generative
model based on a microcanonical maximum entropy principle, as described in Section 6.

3.6 Scattering in Modern Computer Vision

Thanks to their provable deformation stability and ability to preserve important geometric informa-
tion, scattering representations are suitable as feature extractors in many computer vision pipelines.

First demonstrated in [BM13] on handwritten digit classi�cation and texture recognition, scattering-
based image classifcation models have been further developed in [OM15, OBZ17, OZH+ 18], by ex-
tending the wavelet decomposition to other transformation groups (see Section 5) and by integrating
them within CNN architectures as preprocessing stages.

In particular, the results from [OZH + 18] demonstrate that the geometric priors of scattering
representations provide a better trade-o� than data-driven models in the small-training regime, where
large capacity CNNs tend to over�t. Even �rst-order scattering coe�cients may be used to ease
inference and learning within CNN pipelines, as demonstrated in [OBZV18].

Also, let us mention several works that considered `hybrid' models between the fully-structured
scattering networks and the fully-trainable CNNs. [JvGLS16] proposed to learn convolutional �lters
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Figure 8: Samples from
 J;� for di�erent values of J using the gradient descent algorithm described
in Section 6.3. Top row: original images, second row:J = 3 , third row: J = 4 , fourth row: J = 5 ,
�fth row: J = 6 . The visual quality of the reconstruction is nearly perfect for J = 3 and degrades for
larger values ofJ .
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