
The Scattering Transform

February 27, 2020

Abstract

In this Chapter we describe Scattering Representations, a signal representation built using
wavelet multiscale decompositions with a deep convolutional architecture. Its construction high-
lights the fundamental role of geometric stability in deep learning representations, and provides
a mathematical basis to study CNNs. We describe its main mathematical properties, its appli-
cations to computer vision, speech recognition and physical sciences, as well as its extensions
to Lie Groups and non-Euclidean domains. Finally, we discuss recent applications to modeling
high-dimensional probability densities.
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1 Introduction
Understanding the success of deep learning in challenging data domains such as computer vision,
speech recognition or natural language processing remains a major unanswered question, that requires
a tight integration of different theoretical aspects of the learning algorithm: approximation, estimation
and optimization. Amongst the many pieces responsible for such success, an important element
comes from the extra structure built into the neural architecture as a result of the input signal
structure. Images, sounds and text are signals defined over low-dimensional domains, such as grids or
their continuous Euclidean counterparts. In these domains one can articulate specific priors of data
distributions and tasks, which are leveraged in neural networks through convolutional layers.

This requires developing a signal processing theory of deep learning. In order to gain a mathemati-
cal understanding of the interplay between geometric properties of the input domain and convolutional
architectures, in this chapter we set aside the optimization and data-adaptivity pieces of the puzzle,
and take an axiomatic approach to build high-dimensional signal representations with prescribed
properties that make them amenable to complex recognition and classification tasks.

The first step is to develop the notion of geometric stability (Section 2). In essence, a signal
representation defined on a metric domain is geometrically stable if small perturbations in the metric
structure result in small changes in the output features. In Euclidean domains, geometric stability
can be expressed in terms of diffeomorphisms, which model many naturally occurring transformations
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in computer vision and speech recognition, such as changes in viewpoint, local translations, or pitch
transpositions.

Stability to the action of diffeomorphisms is achieved by separating scales, leading to multiscale
signal decompositions. Section 3 describes Scattering Representations on the Euclidean Translation
Group. First introduced in [Mal12], they combine wavelet multiscale decompositions with point-wise
modulus activation functions. We describe its main mathematical properties and applications to
computer vision. Scattering transforms are natural generalisations of multiscale representations of
stochastic processes, in which classical high-order polynomial moments are replaced by stable non-
linear transforms. Section 4 reviews Stochastic Scattering representations and their main applications
to multifractal analysis.

Euclidean Scattering representations serve as a mathematical basis to study CNNs on image and
audio domains. In many areas of physical and social sciences, however, data is rarely defined over
regular Euclidean domains. As it turns out, one can extend the formalism of geometric stability and
wavelet scattering representations on two important directions: first, to more general Lie Groups of
transformations (Section 5), and then to graphs and manifolds (Section 5.3).

We conclude this chapter by focusing on two important applications of scattering representations.
Thanks to their ability to capture key geometrical properties of high-dimensional signals with stability
guarantees, they may be used in unsupervised learning to perform high-dimensional density estimation
and implicit modeling, as described in Section 6.

2 Geometric Stability
This Section describes the notion of geometric stability in signal representations. We begin with the
Euclidean setting (subsection 2.1), where this stability is expressed in terms of diffeomorphisms of the
signal domain. We then discuss how to extend this notion to general metric domains in subsection
2.3, and then highlight the limitations of several standard high-dimensional signal representations in
regards to geometric stability (subsection 2.4).

2.1 Euclidean Geometric Stability
Consider a compact d-dimensional Euclidean domain Ω = [0, 1]d ⊂ Rd on which square-integrable
functions x ∈ L2(Ω) are defined (for example, in image analysis applications, images can be thought
of as functions on the unit square Ω = [0, 1]2). We consider a generic supervised learning setting, in
which an unknown function f : L2(Ω)→ Y is observed on a training set {xi ∈ L2(Ω), fi = f(xi)}i∈I .
In the vast majority of computer vision and speech analysis tasks, the unknown function f satisfies
crucial regularity properties expressed in terms of the signal domain Ω.

Global Translation Invariance: Let Tvx(u) = x(u − v), u, v ∈ Ω, be a translation operator1
acting on functions x ∈ L2(Ω). Our first assumption is that the function f is either invariant, ie
f(Tvx) = f(x) for any x ∈ L2(Ω) and v ∈ Ω, or equivariant, ie f(Tvx) = Tvf(x), with respect to
translations, depending on the task. Translation invariance is typical in object classification tasks,
whereas equivariance arises when the output of the model is a space in which translations can act
upon (for example, in problems of object localization, semantic segmentation, or motion estimation).

The notion of global invariance/equivariance can be easily extended to other transformation groups
beyond translations. Section 5 discusses one such extension, to the group of rigid motions generated
by translations and rotations in Ω.

However, global invariance is not a strong prior in the face of high-dimensional estimation. Ineed,
global transformation groups are typically low-dimensional; in particular, in signal processing, they
often correspond to subgroups of the affine group Aff(Ω), with dimension O(d2). A much stronger
prior may be defined by specifying how the function f behaves under geometric perturbations of the
domain which are ‘nearby’ these global transformation groups.

1 Assuming periodic boundary conditions to ensure that the operation is well-defined over L2(Ω).
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Local deformations and scale separation: In particular, given a smooth vector field τ : Ω → Ω, a
deformation by τ acts on L2(Ω) as xτ (u) := x(u− τ(u)). Deformations can model local translations,
changes in point of view, rotations and frequency transpositions [BM13], and have been extensively
used as models of image variability in computer vision [JZL96, FGMR10, GDDM14]. Most tasks
studied in computer vision are not only translation invariant/equivariant, but also stable with respect
to local deformations [Mal16, BM13]. In tasks that are translation invariant, this prior may be
expressed informally as

|f(xτ )− f(x)| ≈ ‖τ‖, (1)

for all x, τ . Here, ‖τ‖ measures the distance of the associated diffeomorphism ϕ(u) := u− τ(u) to the
translation group; we will see in next section how to specify this metric in the space of diffeomorphisms.
In other words, the target to be predicted does not change much if the input image is slightly deformed.
In tasks that are translation equivariant, we have |f(xτ ) − fτ (x)| ≈ ‖τ‖ instead. The deformation
stability property is much stronger than the global invariance one, since the space of local deformations
has high dimensionality, as opposed to the group of global invariants.

As we will see later, a key consequence of (1) is that long-range dependencies may be broken
into multi-scale local interaction terms, leading to hierarchical models in which spatial resolution is
progressively reduced. To illustrate this principle, denote by

q(z1, z2; v) = Prob(x(u) = z1 and x(u+ v) = z2) (2)

the joint distribution of two image pixels at an offset v from each other, where we have assumed a
stationary statistical model for natural images (hence q does not depend upon the location u). In
presence of long-range dependencies, this joint distribution will not be separable for any v. However,
the deformation stability prior states that q(z1, z2; v) ≈ q(z1, z2; v(1 + ε)) for small ε. In other words,
whereas long-range dependencies indeed exist in natural images and are critical to object recogni-
tion, they can be captured and down-sampled at different scales. This principle of stability to local
deformations has been exploited in the computer vision community in models other than CNNs, for
instance, deformable parts models [FGMR10], as we will review next. In practice, the Euclidean
domain Ω is discretized using a regular grid with n points; the translation and deformation operators
are still well-defined so the above properties hold in the discrete setting.

2.2 Representations with Euclidean Geometric Stability
Motivated by the previous geometric stability prior, we are interested in building signal representations
that are compatible with such a prior. Specifically, suppose our estimation for f , the target function,
takes the form

f̂(x) := 〈Φ(x), θ〉 , (3)

where Φ : L2(Ω) → RK corresponds to the signal representation and θ ∈ RK the classification or
regression coefficients, respectively. In a CNN, one would associate Φ with the operator that maps
the input to the last hidden layer, and θ with the very last output layer of the network.

The linear relationship between Φ(x) and f̂(x) above implies that geometric stability in the repre-
sentation is sufficient to guarantee a predictor which is also geometrically stable. Indeed, if we assume
that

∀ x, τ , ‖Φ(x)− Φ(xτ )‖ . ‖x‖‖τ‖ , (4)

then by Cauchy-Schwartz, it follows that

|f̂(x)− f̂(xτ )| ≤ ‖θ‖‖Φ(x)− Φ(xτ )‖ . ‖θ‖‖x‖‖τ‖ .

This motivates the study of signal representations where one can certify (4), while ensuring that
Φ captures enough information so that ‖Φ(x) − Φ(x′)‖ is large whenever |f(x) − f(x′)| is large. In
this setting, a notorious challenge to achieving (4) while keeping enough discriminative power in Φ(x)
is to transform the high-frequency content of x in such a way that it becomes stable.
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In recognition tasks, one may not only want to consider geometric stability, but also stability with
respect to the Euclidean metric in L2(Ω):

∀x,x′ ∈ L2(Ω) , ‖Φ(x)− Φ(x′)‖ . ‖x− x′‖ . (5)

This stability property ensures that additive noise in the input will not drastically change the feature
representation.

The stability desiderata (4) and (5) may also be interpreted in terms of robustness to adversarial
examples [SZS+13]. Indeed, the general setup of adversarial examples consists in producing small
perturbations x′ of a given input x (measured by appropriate norms) such that |〈Φ(x)− Φ(x′), θ〉| is
large. Stable representations certify that those adversarial examples cannot be obtained with small
additive or geometric perturbations.

2.3 Non-Euclidean Geometric Stability
Whereas Euclidean domains may be used to model many signals of interest, such as images, videos or
speech, a wide range of high-dimensional data across physical and social sciences is naturally defined
on more general geometries. For example, signals measured on social networks have rich geometrical
structure, encoding locality and multiscale properties, yet they on a non-Euclidean geometry. An
important question is thus how to extend the notion of geometrical stability to more general domains.

Deformations provide the natural framework to describe geometric stability in Euclidean domains,
but their generalization to non-Euclidean, non-smooth domains is not straightforward. Let x ∈ L2(X )
be a signal defined on a domain X . If X is embedded into a low-dimension Euclidean space Ω ⊂ Rd,
such as a 2-surface within a three-dimensional space, then one can still define meaningful deformations
on X via extrinsic deformations of Ω. Indeed, if τ : Rd → Rd is a smooth field and ϕ(v) = v − τ(v)
the corresponding diffeomorphism (assuming ‖τ‖ < 1/2), then we can define xτ ∈ L2(Xτ ) as

xτ (u) := x(ϕ−1(u)) , u ∈ X .

Such deformation models have been studied in [KBPZ17] with applications in surface representation,
in which the notion of geometric stability relies on its ambient Euclidean structure.

In more general applications, however, we may be interested in intrinsic notions of geometric
stability, that do not necessarily rely on a pre-existent low-dimensional embedding of the domain.
The change of variables ϕ(u) = u − τ(u) defining the deformation can be seen as a perturbation of
the Euclidean metric in L2(Rd). Indeed,

〈xτ ,yτ 〉L2(Rd,µ) =

∫
Rd

xτ (u)yτ (u)dµ(u) =

∫
Rd

x(u)y(u)|I −∇τ(u)|dµ(u) = 〈x,y〉L2(Rd,µ̃) ,

with dµ̃(u) = |I−∇τ(u)|dµ(u), and |I−∇τ(u)| ≈ 1 if ‖∇τ‖ is small, where I is the identity. Therefore,
a possible way to extend the notion of deformation stability to general domains L2(X ) is to think of
X as a metric space and reason in terms of stability of Φ : L2(X )→ RK to metric changes in X . This
requires a representation that can be defined on generic metric spaces, as well as a criteria to compare
how close two metric spaces are. We will describe a general approach for discrete metric spaces based
on diffusion operators in Section 5.3.

2.4 Examples
2.4.1 Kernel Methods

Kernel methods refer to a general theory in the machine learning framework, whose main purpose
consists in embedding data in a high dimensional space, in order to express complex relationships in
terms of linear scalar products.
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For a generic input space Z (which can be thought of as Z = L2(X ) corresponding to the previous
discussion), a feature map Φ : Z −→ H maps data into a Hilbert space H with the reproducing
property: for each f ∈ H and x ∈ Z, f(x) = 〈f,Φ(x)〉. Linear classification methods access the
transformed data Φ(x) only through scalar products of the form [STC04]

〈Φ(x),Φ(x′)〉 .

Rather than building the mapping explicitly, the popular “Kernel Trick" exploits Mercer’s theorem.
It states that a continuous, symmetric and positive definite kernel K : Z ×Z → R defines an integral
operator of L2(Z), which diagonalizes in an orthonormal basis [MNY06] {φn}n of L2(Z), with non-
negative eigenvalues. As a result, K(x,x′) admits a representation

K(x,x′) =
∑
n≥1

λnφn(x)φn(x′) ,

which yields
K(x,x′) = 〈Φ(x),Φ(x′)〉 ,

with Φ(x) = (λ
1/2
n φn(x))n. In Kernel methods it is thus sufficient to construct positive definite kernels

K on Z2 in order to extend linear classification tools to more complex relationships.
Despite their success and effectiveness in a number of machine learning tasks, the high dimensional

embeddings induced by kernel methods do not automatically enjoy the stability properties to additive
noise or deformations. The kernel needs to be chosen accordingly. Convolutional Kernels Networks
[MKHS14, BM17] have been developed to capture the geometric stability properties and offer com-
petitive empirical performance to modern deep architectures. These kernels contrast with another
recent family of Neural Tangent Kernels [JGH18], which linearize a generic deep architecture around
its parameter initialization, and which do not offer the same amount of geometric stability [BM19].

2.4.2 Power Spectra, Autocorrelation and Registration Invariants

Translation invariant representations can be obtained from registration, auto-correlation or Fourier
modulus operators. However, the resulting representations are not Lipschitz continuous to deforma-
tions.

A representation Φ(x) is translation invariant if it maps global translations xc(u) = x(u − c) by
c ∈ Rd of any function x ∈ L2(Rd) to the same image:

∀x ∈ L2(Rd) , ∀ c ∈ Rd , Φ(xc) = Φ(x) . (6)

The Fourier transform modulus is an example of a translation invariant representation. Let x̂(ω)
be the Fourier transform of x(u) ∈ L2(Rd). Since x̂c(ω) = e−ic.ω x̂(ω), it follows that |x̂c| = |x̂| does
not depend upon c.

A Fourier modulus is translation invariant and stable to additive noise, but unstable to small
deformations at high frequencies [Mal12], as illustrated with the following dilation example. Let
τ(u) = su denote a linear displacement field where |s| is small, and let x(u) = eiξuθ(u) be a modulated
version of a lowpass window θ(u). Then the dilation xτ (u) = L[τ ]x(u) = x((1+s)u) moves the central
frequency of x̂ from ξ to (1 + s)ξ. If σ2

θ =
∫
|ω|2|θ̂(ω)|2dω measures the frequency spread of θ, then

σ2
x =

∫
|ω − ξ|2|x̂(ω)|2dω = σ2

θ ,

and

σ2
xτ = (1 + s)−d

∫
(ω − (1 + s)ξ)2|x̂((1 + s)−1ω)|2dω

=

∫
|(1 + s)(ω − ξ)|2|x̂(ω)|2dω = (1 + s)2σ2

x .
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It follows that if the distance between the central frequencies of x and xτ , sξ, is large compared to
their frequency spreads, (2 + s)σθ, then the frequency supports of x and xτ are nearly disjoint and
hence

‖|x̂τ | − |x̂|‖ ∼ ‖x‖ ,
which shows that Φ(x) = |x̂| is not Lipschitz continuous to deformations, since ξ can be arbitrarily
large.

Chapter 2. Invariant Scattering Representations

ω

|x̂| |x̂τ |

ξ (1 + s)ξ

σx
(1 + s)σx

Figure 2.1: Dilation of a complex bandpass window. If ξ ≫ σxs−1, then the supports
are nearly disjoint.

Besides deformation instabilities, the Fourier modulus and the autocorrelation lose
too much information. For example, a Dirac δ(u) and a linear chirp eiu2

are two signals
having Fourier transforms whose moduli are equal and constant. Very different signals
may not be discriminated from their Fourier modulus.

A canonical invariant [KDGH07; Soa09] Φ(x) = x(u − a(x)) registers x ∈ L2(Rd)
with an anchor point a(x), which is translated when x is translated:

a(xc) = a(x) + c .

It thus defines a translation invariant representation: Φxc = Φx. For example, the anchor
point may be a filtered maximum a(x) = arg maxu |x ⋆ h(u)|, for some filter h(u). A
canonical invariant Φx(u) = x(u−a(x)) carries more information than a Fourier modulus,
and characterizes x up to a global absolute position information [Soa09]. However, it
has the same high-frequency instability as a Fourier modulus transform. Indeed, for any
choice of anchor point a(x), applying the Plancherel formula proves that

∥x(u− a(x))− x′(u− a(x′))∥ ≥ (2π)−1 ∥|x̂(ω)| − |x̂′(ω)|∥ .

If x′ = xτ , the Fourier transform instability at high frequencies implies that Φx =
x(u− a(x)) is also unstable with respect to deformations.

2.2.5 SIFT and HoG

SIFT (Scale Invariant Feature Transform) is a local image descriptor introduced by Lowe
in [Low04], which achieved huge popularity thanks to its invariance and discriminability
properties.

The SIFT method originally consists in a keypoint detection phase, using a Dif-
ferences of Gaussians pyramid, followed by a local description around each detected
keypoint. The keypoint detection computes local maxima on a scale space generated
by isotropic gaussian differences, which induces invariance to translations, rotations and
partially to scaling. The descriptor then computes histograms of image gradient ampli-
tudes, using 8 orientation bins on a 4× 4 grid around each keypoint, as shown in Figure
2.2.

19

Figure 1: Dilation of a complex bandpass window. If ξ � σxs
−1, then the supports are nearly disjoint.

The autocorrelation of x
Rx(v) =

∫
x(u)x∗(u− v)du

is also translation invariant: Rx = Rxc . Since Rx(v) = x ? x(v), with x(u) = x∗(−u), it follows that
R̂x(ω) = |x̂(ω)|2 . The Plancherel formula thus proves that it has the same instabilities as a Fourier
transform:

‖Rx −Rxτ ‖ = (2π)−1‖|x̂|2 − |x̂τ |2‖ .
Besides deformation instabilities, the Fourier modulus and the autocorrelation lose too much in-

formation. For example, a Dirac δ(u) and a linear chirp eiu
2

are two signals having Fourier transforms
whose moduli are equal and constant. Very different signals may not be discriminated from their
Fourier modulus.

A canonical invariant [KDGH07, Soa09] Φ(x) = x(u− a(x)) registers x ∈ L2(Rd) with an anchor
point a(x), which is translated when x is translated:

a(xc) = a(x) + c .

It thus defines a translation invariant representation: Φxc = Φx. For example, the anchor point
may be a filtered maximum a(x) = arg maxu |x ? h(u)|, for some filter h(u). A canonical invariant
Φx(u) = x(u − a(x)) carries more information than a Fourier modulus, and characterizes x up to a
global absolute position information [Soa09]. However, it has the same high-frequency instability as
a Fourier modulus transform. Indeed, for any choice of anchor point a(x), applying the Plancherel
formula proves that

‖x(u− a(x))− x′(u− a(x′))‖ ≥ (2π)−1 ‖|x̂(ω)| − |x̂′(ω)|‖ .

If x′ = xτ , the Fourier transform instability at high frequencies implies that Φx = x(u− a(x)) is also
unstable with respect to deformations.
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3 Scattering on the Translation Group
This section reviews the Scattering transform on the translation group and its mathematical proper-
ties. Section 3.1 reviews windowed scattering transforms and its construction from Littlewood-Paley
wavelet decompositions. Section 3.2 introduces the scattering metric and reviews the scattering energy
conservation property, and Section 3.3 reviews the Lipschitz continuity property of scattering trans-
forms with respect to deformations. Section 3.4 describes algorithmic aspects and implementation,
and finally Section 3.5 illustrates scattering properties in computer vision applications.

3.1 Windowed Scattering transform
A wavelet transform is defined by dilating a mother wavelet ψ ∈ L2(Rd) with scale factors {aj}j∈Z
for a > 1. In image processing applications one usually sets a = 2, whereas audio applications need
smaller dilation factors, typically a ≤ 21/8. Wavelets are not only dilated but also rotated along a
discrete rotation group G of Rd. As a result, a dilation by aj and a rotation by r ∈ G of ψ produce

ψajr(u) = a−djψ(a−jr−1u) . (7)

Wavelets are thus normalized in L1(Rd), such that ‖ψajr‖1 = ‖ψ‖1, which means that their Fourier
transforms satisfy ψ̂ajr(ω) = ψ̂(ajrω). In order to simplify notations, we denote λ = ajr ∈ aZ × G
and |λ| = aj , and define ψλ(u) = a−djψ(λ−1u). This notation will be used throughout the rest of the
Chapter.

Scattering operators can be defined for general mother wavelets, but of particular interest are the
complex wavelets that can be written as

ψ(u) = eiηuθ(u) ,

where θ is a lowpass window whose Fourier transform is real and has a bandwidth of the order of
π. As a result, after a dilation and a rotation, ψ̂λ(ω) = θ̂(λω − η) is centered at λ−1η and has a
support size proportional to |λ|−1. In Section 3.4.1 we shall specify the wavelet families used along
all numerical experiments.

A Littlewood-Paley wavelet transform is a redundant representation which computes the following
filter bank, without subsampling:

∀u ∈ Rd, ∀λ ∈ aZ ×G ,Wλx(u) = x ? ψλ(u) =

∫
x(v)ψλ(u− v)dv . (8)

If x is real and the wavelet is chosen such that ψ̂ is also real, then W−λx = Wλx
∗, which implies that

in that case one can assimilate a rotation r with its negative version −r into an equivalence class of
positive rotations G+ = G/{±1}.

A wavelet transform with a finite scale 2J only considers the subbands λ satisfying |λ| ≤ 2J . The
low frequencies which are not captured by these wavelets are recovered by a lowpass filter φJ whose
spatial support is proportional to 2J : φJ(u) = 2−dJφ(2−Ju). The wavelet transform at scale 2J thus
consists in the filter bank

WJx = {x ? φJ , (Wλx)λ∈ΛJ} ,
where ΛJ = {ajr : r ∈ G+, |λ| ≤ 2J}. Its norm is defined as

‖WJx‖2 = ‖x ? φJ‖2 +
∑
λ∈ΛJ

‖Wλx‖2 .

WJ is thus a linear operator from L2(Rd) to a product space generated by copies of L2(Rd). It defines
a frame of L2(Rd), whose bounds are characterized by the following Littlewood-Paley condition:
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Proposition 3.1. If there exists ε > 0 such that for almost all ω ∈ Rd and all J ∈ Z

1− ε ≤ |φ̂(2Jω)|2 +
1

2

∑
j≤J

∑
r∈G
|ψ̂(2jrω)|2 ≤ 1 ,

then WJ is a frame with bounds given by 1− ε and 1:

(1− ε)‖x‖2 ≤ ‖WJx‖2 ≤ ‖x‖2 , x ∈ L2(Rd) . (9)

In particular, this Littlewood-Paley condition implies that ψ̂(0) = 0 and hence that the wavelet
must have at least a vanishing moment. When ε = 0, the wavelet decomposition preserves the
Euclidean norm and we say that it is unitary.

Wavelet coefficients are not translation invariant but translate as the input is translated, and their
average

∫
Wλx(u)du does not produce any information since wavelets have zero mean. A translation

invariant measure which is also stable to the action of diffeomorphisms can be extracted out of each
wavelet sub-band λ, by introducing a non-linearity which restores a non-zero, informative average
value. This is for instance achieved by computing the complex modulus and averaging the result∫

|x ? ψλ|(u)du . (10)

Although many other choices of non-linearity are algorithmically possible, the complex modulus pre-
serves the signal energy and enables overall energy conservation; see next Section. We will discuss in
Section ?? how the choice of non-linearity is informed by geometric stability, and finally in Section 7
how half-rectified alternatives provide further insights into the signal through the Phase Harmonics.

The information lost by the averaging in (10) is recovered by a new wavelet decomposition {|x ?
ψλ| ? ψλ′}λ′∈ΛJ of |x ? ψλ|, which produces new invariants by iterating the same procedure. Let
U [λ]x = |x?ψλ| denote the wavelet modulus operator corresponding to the subband λ. Any sequence
p = (λ1, λ2, ..., λm) defines a path, i.e, the ordered product of non-linear and non-commuting operators

U [p]x = U [λm] ... U [λ2]U [λ1]x = | ||x ? ψλ1 | ? ψλ2 | ... | ? ψλm | ,

with U [∅]x = x.
Similarly as with frequency variables, one can manipulate path variables p = (λ1, . . . , λm) in

a number of ways. The scaling and rotation by alg ∈ aZ × G+ of a path p is denoted algp =
(algλ1, . . . , a

lgλm), and the concatenation of two paths is written p+ p′ = (λ1, . . . , λm, λ
′
1, . . . , λ

′
m′).

Many applications in image and audio recognition require locally translation invariant represen-
tations, but which keep spatial or temporal information beyond a certain scale 2J . A windowed
scattering transform computes a locally translation invariant representation by applying a lowpass
filter at scale 2J with φ2J (u) = 2−2Jφ(2−Ju).

Definition 3.2. For each path p = (λ1, . . . , λm) with λi ∈ ΛJ and x ∈ L1(Rd) we define the windowed
scattering transform as

SJ [p]x(u) = U [p]x ? φ2J (u) =

∫
U [p]x(v)φ2J (u− v) dv ,

A Scattering transform has the structure of a convolutional network, but its filters are given by
wavelets instead of being learnt. Thanks to this structure, the resulting transform is locally translation
invariant and stable to deformations, as will be discussed in 3.3. The scattering representation enjoys
several appealing properties described in the following sections.

9



m= 0

m= 1

m= 2

m= 3

f

U [λ1]f

SJ[;]f = f ?φJ

U [λ1;λ2]f

SJ[λ1]f

SJ[λ1;λ2]f

Figure 2: Convolutional structure of the windowed scattering transform. Each layer is computed from
the previous by applying a wavelet modulus decomposition U on each envelope U [p]x. The outputs
of each layer are obtained via a lowpass filter φJ .

3.2 Scattering metric and Energy Conservation
The windowed scattering representation is obtained by cascading a basic propagator operator,

UJx = {x ? φJ , (U [λ]x)λ∈ΛJ} . (11)

The first layer of the representation applies UJ to the input function, whereas successive layers are
obtained by applying UJ to each output U [p]x. Since U [λ]U [p] = U [p + λ] and U [p]x ? φJ = SJ [p]x,
it follows that

UJU [p]x = {SJ [p]x, (U [p+ λ]x)λ∈ΛJ} . (12)

If ΛmJ denotes the set of paths of length or order m, it follows from (12) that the (m + 1)-th layer
given by Λm+1

J is obtained from the previous layer via the propagator UJ . We denote PJ the set of
paths of any order up to scale 2J , PJ = ∪mΛmJ .

The propagator UJ is non-expansive, since the wavelet decomposition WJ is non-expansive from
(9) and the modulus is also non-expansive. As a result,

‖UJx− UJx′‖2 = ‖x ? φJ − x′ ? φJ‖2 +
∑
λ∈ΛJ

‖|Wλx| − |Wλx
′|‖2 ≤ ‖x− x′‖2 .

Moreover, if the wavelet decomposition is unitary, then the propagator UJ is also unitary.
For any path set Ω, the Euclidean norm defined by the scattering coefficients SJ [p] , p ∈ Ω is

‖SJ [Ω]x‖2 =
∑
p∈Ω

‖SJ [p]x‖2 .

Since SJ [PJ ] is constructed by cascading the non-expansive operator UJ , it follows that SJ [PJ ] is also
non-expansive:

Proposition 3.3. The windowed scattering transform is non-expansive:

∀x,x′ ∈ L2(Rd) , ‖SJ [PJ ]x− SJ [PJ ]x′‖ ≤ ‖x− x′‖ . (13)

The windowed scattering thus defines a metric which is continuous with respect to the L2(Rd)
euclidean metric, and thus it is stable to additive noise.
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Let us now consider the case where the wavelet decomposition is unitary, ie ε = 0 in (9). One can
easily verify by induction on the path order m = |p| that

∀ m , ‖x‖2 =
∑
|p|<m

‖SJ [p]x‖2 +
∑
|p|=m

‖U [p]x‖2 .

This decomposition expresses the signal energy ‖x‖2 in terms of coefficients captured by the first
m layers of the scattering network, and a residual energy RJ,x(m) :=

∑
p∈PJ ;|p|=m ‖U [p]x‖2. An

important question with practical implications is to understand the energy decay RJ,x(m) as m
grows, since this determines how many layers of processing are effectively needed to represent the
input. In particular, the Scattering representation is energy-preserving if limm→∞RJ,x(m) = 0.

This is established under mild assumptions on the wavelet decomposition for the univariate case
x ∈ L2(R) in [Wal17]:

Theorem 3.4 ([Wal17], Theorem 3.1). Let {ψj}j∈Z be a family of wavelets satisfying the Littlewood-
Paley condition (9), and such that

∀ j, ω > 0 , |ψ̂j(−ω)| ≤ |ψ̂j(ω)| ,

with strict inequality for each ω for at least one scale. Finally, we assume for some ε > 0

ψ̂(ω) = O(|ω|1+ε) .

Then for any J ∈ Z, there exists r > 0, a > 1 such that for all m ≥ 2 and f ∈ L2(R) it holds

RJ,x(m) ≤ ‖x‖2 − ‖x ? χram‖2 , (14)

where χs is the Gaussian window χs(t) =
√
πs exp(−(πst)2).

This result establishes in particular the energy conservation, owing to the square integrability of
x̂ ∈ L2(R). But, importantly, it also provides a quantitative rate in which the energy decays within the
network: the energy in the input signal carried by frequencies around 2k disappears after O(k) layers,
leading to exponential energy decay. An earlier version of the energy conservation was established
in [Mal12] for general input dimensions, but under more restrictive admissibility conditions for the
wavelet, and without the rate of convergence.

A similar energy conservation result with also exponential convergence rate has been established for
extensions of the scattering transform, where the wavelet decomposition is replaced by other frames.
[CL17] studies energy conservation for uniform covering frames, obtaining exponential convergence
too. [WGB17] generalise this result to more general frames that are also allowed to vary from one
layer to the next.

3.3 Local Translation Invariance and Lipschitz Continuity to Deformations
The windowed scattering metric defined in the previous section is non-expansive, which gives sta-
bility to additive perturbations. In this Section we review its geometric stability to the action of
deformations, and its asymptotic translation invariance, as the localization scale 2J increases.

Each choice of such localization scale defines a metric dJ(x,x′) := ‖SJ [PJ ]x − SJ [PJ ]x′‖. An
induction argument over the non-expansive Littlewood-Paley property (9) shows that the limit of dJ
as J →∞ is well defined thanks to the following non-expansive property:

Proposition 3.5 ([Mal12], Prop 2.9). For all x,x′ ∈ L2(Rd) and J ∈ Z,

‖SJ+1[PJ+1]x− SJ+1[PJ+1]x′‖ ≤ ‖SJ [PJ ]x− SJ [PJ ]x′‖ .

11



As a result, the sequence (‖SJ [PJ ]x − SJ [PJ ]x′‖)J is positive and non-increasing as J increases,
and hence it converges.

In fact, under mild assumptions, this limit metric is translation invariant:

Theorem 3.6 ([Mal12], Theorem 2.10). Let xv(u) = x(u−v). Then for admissible scattering wavelets
satisfying the assumptions of Theorem (3.4) it holds

∀x ∈ L2(Rd) ,∀c ∈ Rd , lim
J→∞

‖SJ [PJ ]x− SJ [PJ ]xv‖ = 0 . (15)

for d = 1.

Remark 3.7. This result is proven in [Mal12] for general dimensions d under stronger assumptions
on the wavelets (admissibility condition (2.28) in [Mal12]). However, these stronger assumptions may
not be necessary, by extending the result in [Wal17] to arbitrary d.

Remark 3.8. [WB17] describes an interesting extension of Theorem 3.6 which holds for more general
decomposition frames beyond wavelets, based on the notion of vertical translation invariance. This
refers to the asymptotic translation invariance enjoyed by m-th layer coefficients of the network, as m
grows.

The translation invariance of the overall representation is based on two fundamental properties:
(i) the equivariance of wavelet modulus decomposition operators with respect to translation, UJTvx =
TvUJx, and (ii) the invariance provided by the local averaging operator AJx := x ? φJ . Indeed,
scattering coefficients up to order m are obtained by composing UJ up to m times followed by AJ . It
follows that the translation invariance measured at order m is expressed as

‖SJ [ΛmJ ]Tvx− SJ [ΛmJ ]x‖ = ‖AJTvU [ΛmJ ]x−AJU [ΛmJ ]x‖ ≤ ‖U [ΛmJ ]x‖‖AJTv −AJ‖ .

Besides asymptotic translation invariance, the windowed scattering transform defines a stable
metric with respect to the action of diffeomorphisms, which can model non-rigid deformations. A
diffeomorphism maps a point u ∈ Rd to u− τ(u), where τ(u) is a vector displacement field satisfying
‖∇τ‖∞ < 1, where ‖∇τ‖ is the operator norm. As described in Section 2.1, it acts on functions
x ∈ L2(Rd) by composition: xτ (u) = x(u− τ(u)). The following central theorem computes an upper
bound of ‖SJ [PJ ]xτ −SJ [PJ ]x‖. For that purpose, we assume an admissible scattering wavelet2, and
we define the auxiliary norm

‖U [PJ ]x‖1 =
∑
m≥0

‖U [ΛmJ ]x‖ .

Theorem 3.9 ([Mal12], Theorem 2.12). There exists C such that every x ∈ L2(Rd) with ‖U [PJ ]x‖1 <
∞ and τ ∈ C2(Rd) with ‖∇τ‖∞ ≤ 1/2 satisfy

‖SJ [PJ ]xτ − SJ [PJ ]x‖ ≤ C‖U [PJ ]x‖1K(τ) , (16)

with

K(τ) = 2−J‖τ‖∞ + ‖∇τ‖∞max

(
1, log

supu,u′ |τ(u)− τ(u′)|
‖∇τ‖∞

)
+ ‖Hτ‖∞ ,

and for all m ≥ 0, if PJ,m = ∪n<mΛnJ , then

‖SJ [PJ,m]xτ − SJ [PJ,m]x‖ ≤ Cm‖x‖K(τ) . (17)
2Again, as mentioned in Remark 3.7, such admissible wavelet conditions can be relaxed by extending the energy

conservation results from [Wal17].
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This theorem shows that a diffeomorphism produces in the scattering domain an error bounded
by a term proportional to 2−J‖τ‖∞, which corresponds to the local translation invariance, plus a
deformation error proportional to ‖∇τ‖∞. Whereas rigid translations Tv commute with all the con-
volutional or point-wise operators defining the scattering representation, non-rigid deformations no
longer commute with convolutions. The essence of the proof is thus to control the commutation error
between the wavelet decomposition and the deformation. If Lτ denotes the deformation operator
Lτx = xτ , [Mal12] proves that

‖[WJ ,Lτ ]‖ = ‖WJLτ − LτWJ‖ . ‖∇τ‖ ,

thanks to the scale separation properties of wavelet decompositions.
The norm ‖U [PJ ]x‖1 measures the decay of the scattering energy across depth. Again, in the

univariate case it is shown in [Wal17] that

∀m , ‖U [ΛmJ ]x‖ ≤
(∫
|x̂(ω)|2hm(ω)dω

)1/2

,

with hm(ω) = 1− exp(−2(ω/(ram))2) and a > 1. Denote by

F =

{
x;

∫
|x̂(ω)|2 log(1 + |ω|)dω <∞

}
the space of functions whose Fourier transform is square integrable against a logarithmic scaling. This
corresponds to a logarithmic Sobolev class of functions having an average modulus of continuity in
L2(Rd). In that case, for x ∈ F , we verify that

Proposition 3.10. If x ∈ F , then ‖U [PJ ]x‖1 <∞ .

This implies that the geometric stability bound from Theorem 3.9 applies to such functions, with an
upper bound that does not blow up with depth. When x has compact support, the following corollary
shows that the windowed scattering metric is Lipschitz continuous to the action of diffeomorphisms:

Corollary 3.11 ([Mal12], Corollary 2.15). For any compact set Ω ⊂ Rd there exists C such that for
all x ∈ L2(Rd) supported in Ω with ‖U [PJ ]x‖1 <∞ and for all τ ∈ C2(Rd) with ‖∇τ‖∞ ≤ 1/2, then

‖SJ [PJ,m]xτ − SJ [PJ,m]x‖ ≤ C‖U [PJ ]x‖1
(
2−J‖τ‖∞ + ‖∇τ‖∞ + ‖Hτ‖∞

)
. (18)

The translation error term, proportional to 2−J‖τ‖∞, can be reduced to a second-order error term,
2−2J‖τ‖2∞, by considering a first order Taylor approximation of each SJ [p]x [Mal12].

As mentioned earlier, [CL17] and [WB17] developed extensions of scattering representations by
replacing scattering wavelets with other decomposition frames, also establishing deformation stability
bounds. However, an important difference between these results and Theorem 3.9 is that no bandlim-
ited assumption is made on the input signal x, but rather the weaker condition that ‖U [PJ ]x‖1 <∞.
For appropriate wavelets leading to exponential energy decay, such quantity is bounded for x ∈ L1∩L2.
Finally, another relevant work that connected the above geometric stability results with kernel methods
is [BM17], in which a Convolutional Kernel is constructed that enjoys provable deformation stability.

3.4 Algorithms
We now describe algorithmic aspects of the scattering representation, in particular the choice of
scattering wavelets and the overall implementation as a specific CNN architecture.
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3.4.1 Scattering Wavelets

The Littlewood-Paley wavelet transform of x, {x ? ψλ(u)}λ, defined in (8), is a redundant transform
with no orthogonality property. It is stable and invertible if the wavelet filters ψ̂λ(ω) cover the whole
frequency plane. On discrete images, to avoid aliasing, one may only capture frequencies in the circle
|ω| ≤ π inscribed in the image frequency square. Most camera images have negligible energy outside
this frequency circle.

As mentioned in Section 3.1, one typically considers near-analytic wavelets, meaning that |ψ̂(−ω)| �
|ψ̂(ω)| for ω lying on a predefined half-space of R2. The reason is hinted in Theorem 3.4, namely the
complex envelop of analytic wavelets is smoother than that of a real wavelet, and therefore more
energy will be captured at earlier layers of the scattering representation.

Figure 3: Complex Morlet wavelet. (a): Real part of ψ(u). (b): Imaginary part of ψ(u). (c): Fourier
modulus |ψ̂(ω)|.

Let u.u′ and |u| denote the inner product and norm in R2. A Morlet wavelet ψ is an example of
complex wavelet given by

ψ(u) = α (eiu.ξ − β) e−|u|
2/(2σ2) ,

where β � 1 is adjusted so that
∫
ψ(u) du = 0. Its real and imaginary parts are nearly quadrature

phase filters. Figure 3 shows the Morlet wavelet with σ = 0.85 and ξ = 3π/4, used in all classification
experiments. The Morlet wavelet ψ shown in Figure 3 together with φ(u) = exp(−|u|2/(2σ2))/(2πσ2)
for σ = 0.7 satisfy (9) with ε = 0.25.

Cubic spline wavelets are an important family of unitary wavelets satisfying the Littlewood-Paley
condition (9) with ε = 0. They are obtained from a cubic-spline orthogonal Battle-Lemairé wavelet,
defined from the conjugate mirror filter [Mal08]

ĥ(ω) =

√
S8(ω)

28S8(2ω)
,with Sn(ω) =

∞∑
k=−∞

1

(ω + 2kπ)n
,

which in the case n = 8 simplifies to the expression

S8(2ω) =
5 + 30 cos2(ω) + 30 sin2(ω) cos2(ω)

10528 sin8(ω)
+

70 cos4(ω) + 2 sin4(ω) cos2(ω) + 2/3 sin6(ω)

10528 sin8(ω)
.

In two dimensions, ψ̂ is defined as a separable product in frequency polar coordinates ω = |ω|η,
where η is a unit vector:

∀|ω|, η ∈ R+ × S1 , ψ̂(ω) = ψ̂1(|ω|)γ(η) ,

with γ designed such that
∀η ,

∑
r∈G+

|γ(r−1η)|2 = 1 .

Figure 4 shows the corresponding two-dimensional filters obtained with spline wavelets, by setting
both ψ̂1 and γ to be cubic splines.
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Figure 4: Complex cubic Spline wavelet. (a): Real part of ψ(u). (b): Imaginary part of ψ(u). (c):
Fourier modulus |ψ̂(ω)|.

3.4.2 Fast Scattering Computations with Scattering Convolutional Network

A scattering representation is implemented with a CNN having a very specific architecture. As opposed
to standard CNNs, output scattering coefficients are produced by each layer as opposed to the last
layer.Filters are not learned from data but are predefined wavelets. If p = (λ1, ..., λm) is a path of
length m then the windowed scattering coefficients SJ [p]x(u) of order m are computed at the layer m
of a convolution network which is specified.

We describe a fast scattering implementation over frequency decreasing paths, where most of the
scattering energy is concentrated. A frequency decreasing path p = (2−j1r1, ..., 2

−jmrm) satisfies
0 < jk ≤ jk+1 ≤ J . If the wavelet transform is computed over K rotation angles then the total
number of frequency-decreasing paths of length m is Km

(
J
m

)
. Let N be the number of pixels of the

image x. Since φ2J is a low-pass filter scaled by 2J , SJ [p]x(u) = U [p]x ? φ2J (u) is uniformly sampled
at intervals α2J , with α = 1 or α = 1/2. Each SJ [p]x is an image with α−22−2JN coefficients. The
total number of coefficients in a scattering network of maximum depth m is thus

P = N α−2 2−2J
m∑
m=0

Km

(
J

m

)
. (19)

If m = 2 then P ' α−2N2−2JK2J2/2. It decreases exponentially when the scale 2J increases.
Algorithm 1 describes the computations of scattering coefficients on sets Pm↓ of frequency de-

creasing paths of length m ≤ m. The initial set P0
↓ = {∅} corresponds to the original image

U [∅]x = x. Let p + λ be the path which begins by p and ends with λ ∈ P. If λ = 2−jr then
U [p+λ]x(u) = |U [p]x ?ψλ(u)| has energy at frequencies mostly below 2−jπ. To reduce computations
we can thus subsample this convolution at intervals α2j , with α = 1 or α = 1/2 to avoid aliasing.

At the layer m there are Km
(
J
m

)
propagated signals U [p]x with p ∈ Pm↓ . They are sampled

at intervals α2jm which depend on p. One can verify by induction on m that the layer m has a
total number of samples equal to α−2 (K/3)mN . There are also Km

(
J
m

)
scattering signals S[p]x

but they are subsampled by 2J and thus have much less coefficients. The number of operation to
compute each layer is therefore driven by the O((K/3)mN logN) operations needed to compute the
internal propagated coefficients with FFT’s. For K > 3, the overall computational complexity is thus
O((K/3)mN logN).

The package Kymatio [AAE+18] provides a modern implementation of scattering transforms lever-
aging efficient GPU-optimized routines.

3.5 Empirical Analysis of Scattering Properties
To illustrate the properties of scattering representations, let us describe a visualization procedure.
For a fixed position u, windowed scattering coefficients SJ [p]x(u) of order m = 1, 2 are displayed as
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Algorithm 1 Fast Scattering Transform
for m = 1 to m do
for all p ∈ Pm−1

↓ do
Output SJ [p]x(α2Jn) = U [p]x ? φ2J (α2Jn)

end for
for all p+ λm ∈ Pm↓ with λm = 2−jmrm do
Compute

U [p+ λm]x(α2jmn) = |U [p]x ? ψλm(α2jmn)|
end for

end for
for all p ∈ Pmax

↓ do
Output SJ [p]x(α2Jn) = U [p]x ? φ2J (α2Jn)

end for

Ω[λ1]

Ω[λ1;λ2]

(a) (b)

Figure 5: To display scattering coefficients, the disk covering the image frequency support is parti-
tioned into sectors Ω[p], which depend upon the path p. (a): For m = 1, each Ω[λ1] is a sector rotated
by r1 which approximates the frequency support of ψ̂λ1 . (b): For m = 2, all Ω[λ1, λ2] are obtained by
subdividing each Ω[λ1].
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Figure 6: (a) Two images x(u). (b) Fourier modulus |x̂(ω)|. (c) First order scattering coefficients
SJx[λ1] displayed over the frequency sectors of Figure 5(a). They are the same for both images. (d)
Second order scattering coefficients SJx[λ1, λ2] over the frequency sectors of Figure 5(b). They are
different for each image.

piecewise constant images over a disk representing the Fourier support of the image x. This frequency
disk is partitioned into sectors {Ω[p]}p∈Pm indexed by the path p. The image value is SJ [p]x(u) on
the frequency sectors Ω[p], shown in Figure 5.

For m = 1, a scattering coefficient SJ [λ1]x(u) depends upon the local Fourier transform energy
of x over the support of ψ̂λ1

. Its value is displayed over a sector Ω[λ1] which approximates the
frequency support of ψ̂λ1 . For λ1 = 2−j1r1, there are K rotated sectors located in an annulus of
scale 2−j1 , corresponding to each r1 ∈ G, as shown by Figure 5(a). Their area are proportional to
‖ψλ1

‖2 ∼ K−1 2−j1 .
Second order scattering coefficients SJ [λ1, λ2]x(u) are computed with a second wavelet transform

which performs a second frequency subdivision. These coefficients are displayed over frequency sectors
Ω[λ1, λ2] which subdivide the sectors Ω[λ1] of the first wavelets ψ̂λ1

, as illustrated in Figure 5(b). For
λ2 = 2−j2r2, the scale 2j2 divides the radial axis and the resulting sectors are subdivided into K
angular sectors corresponding to the different r2. The scale and angular subdivisions are adjusted so
that the area of each Ω[λ1, λ2] is proportional to ‖|ψλ1

| ? ψλ2
‖2.

A windowed scattering SJ is computed with a cascade of wavelet modulus operators U defined
in (11), and its properties thus depend upon the wavelet transform properties. Sections 3.3 and 3.2
gave conditions on wavelets to define a scattering transform which is non-expansive and preserves
the signal norm. The scattering energy conservation shows that ‖SJ [p]x‖ decreases quickly as the
length of p increases, and is non-negligible only over a particular subset of frequency-decreasing paths.
Reducing computations to these paths defines a convolution network with much fewer internal and
output coefficients.

Theorem 3.4 proves that the energy captured by the m-th layer of the scattering convolutional
network,

∑
|p|=m ‖SJ [p]x‖2, converges to 0 as m → ∞. The scattering energy conservation also

proves that the more sparse the wavelet coefficients, the more energy propagates to deeper layers.
Indeed, when 2J increases, one can verify that at the first layer, SJ [λ1]x = |x ?ψλ1

| ?φ2J converges to
‖φ‖2 ‖x?ψλ‖21. The more sparse x?ψλ, the smaller ‖x?ψλ‖1 and hence the more energy is propagated
to deeper layers to satisfy the global energy conservation of Theorem 3.4.

Figure 6 shows two images having same first order scattering coefficients, but the top image is
piecewise regular and hence has wavelet coefficients which are much more sparse than the uniform
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Table 1: Percentage of energy
∑
p∈Pm↓ ‖SJ [p]x‖2/‖x‖2 of scattering coefficients on frequency-

decreasing paths of length m, depending upon J . These average values are computed on the Caltech-
101 database, with zero mean and unit variance images.

J m = 0 m = 1 m = 2 m = 3 m = 4 m ≤ 3
1 95.1 4.86 - - - 99.96
2 87.56 11.97 0.35 - - 99.89
3 76.29 21.92 1.54 0.02 - 99.78
4 61.52 33.87 4.05 0.16 0 99.61
5 44.6 45.26 8.9 0.61 0.01 99.37
6 26.15 57.02 14.4 1.54 0.07 99.1
7 0 73.37 21.98 3.56 0.25 98.91

texture at the bottom. As a result the top image has second order scattering coefficients of larger
amplitude than at the bottom. Higher-order coefficients are not displayed because they have a neg-
ligible energy. For typical images, as in the CalTech101 dataset [FFFP04], Table 1 shows that the
scattering energy has an exponential decay as a function of the path length m. Scattering coeffi-
cients are computed with cubic spline wavelets, which define a unitary wavelet transform and satisfy
the scattering admissibility condition for energy conservation. As expected, the energy of scattering
coefficients converges to 0 as m increases, and it is already below 1% for m ≥ 3.

The propagated energy ‖U [p]x‖2 decays because U [p]x is a progressively lower frequency signal
as the path length increases. Indeed, each modulus computes a regular envelop of oscillating wavelet
coefficients. The modulus can thus be interpreted as a non-linear “demodulator” which pushes the
wavelet coefficient energy towards lower frequencies. As a result, an important portion of the energy
of U [p]x is then captured by the low pass filter φ2J which outputs SJ [p]x = U [p]x ? φ2J . Hence fewer
energy is propagated to the next layer.

Another consequence is that the scattering energy propagates only along a subset of frequency
decreasing paths. Since the envelope |x?ψλ| is more regular than x?ψλ, it follows that |x?ψλ(u)|?ψλ′
is non-negligible only if ψλ′ is located at lower frequencies than ψλ, and hence if |λ′| < |λ|. Iterating
on wavelet modulus operators thus propagates the scattering energy along frequency-decreasing paths
p = (λ1, ..., λm) where |λk| < |λk−1| for 1 ≤ k < m. We denote by Pm↓ the set of frequency decreasing
(or equivalently scale increasing) paths of length m. Scattering coefficients along other paths have
a negligible energy. This is verified by Table 1 which shows not only that the scattering energy is
concentrated on low-order paths, but also that more than 99% of the energy is absorbed by frequency-
decreasing paths of length m ≤ 3. Numerically, it is therefore sufficient to compute the scattering
transform along frequency-decreasing paths. It defines a much smaller convolution network. Section
3.4.2 shows that the resulting coefficients are computed with O(N logN) operations.

Signal Recovery versus Energy Conservation: Preserving energy does not imply that the
signal information is preserved. Since a scattering transform is calculated by iteratively applying U ,
inverting SJ requires to invert U . The wavelet transformW is a linear invertible operator, so inverting
Uz = {z ? φ2J , |z ?ψλ|}λ∈P amounts to recovering the complex phases of wavelet coefficients removed
by the modulus. The phase of Fourier coefficients can not be recovered from their modulus, but
wavelet coefficients are redundant, as opposed to Fourier coefficients. For particular wavelets, it has
been proved that the phase of wavelet coefficients can be recovered from their modulus, and that U
has a continuous inverse [Wal12].

Still, one can not exactly invert SJ because we discard information when computing the scattering
coefficients SJ [p]x = U [p]x ? φ2J of the last layer Pm. Indeed, the propagated coefficients |U [p]x ?ψλ|
of the next layer are eliminated, because they are not invariant and have a negligible total energy. The
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Figure 7: Signal Reconstruction from Scattering coefficients SJx with J = logN . Top: original
images, Middle: reconstruction from only first-order coefficients. Bottom: reconstruction using first
and second-order coefficients.

number of such coefficients is larger than the total number of scattering coefficients kept at previous
layers. Initializing the inversion by considering that these small coefficients are zero produces an error.
This error is further amplified as the inversion of U progresses across layers from m to 0.

Yet, under some structural assumptions on the signal x, it is possible to recover the signal from
its scattering coefficients z = SJx. For instance, if x admits a sparse wavelet decomposition, [BM18]
shows that important geometrical information of x is preserved in SJx. Figure 7 illustrates the signal
recovery using either m = 1 or m = 2 with J = logN . The recovery is obtained using a gradient-
descent on the energy E(x) = ‖SJx − z‖2 described in Section 6. In this case, first-order scattering
provides a collection of `1 norms {‖x ? ψλ‖1}λ, which recover the overall regularity of the signal, but
fail to reconstruct its geometry. Adding second-order coefficients results in O(logN2) coefficients and
substantially improves the reconstruction quality. In essence, the sparsity in these images creates no
scale interactions on a large subset of scattering coefficients, which reduces the loss of information
caused by the removal of the wavelet phases.

For natural images with weaker sparsity, Figure 8 shows reconstructions from second-order scatter-
ing coefficients for different values of J , using the same recovery algorithm. When the scale 2J is such
that the number of scattering coefficients is comparable with the dimensionality of x, we observe good
perceptual quality. When dim(SJx)� dim(x), scattering coefficients define an underlying generative
model based on a microcanonical maximum entropy principle, as described in Section 6.

3.6 Scattering in Modern Computer Vision
Thanks to their provable deformation stability and ability to preserve important geometric informa-
tion, scattering representations are suitable as feature extractors in many computer vision pipelines.

First demonstrated in [BM13] on handwritten digit classification and texture recognition, scattering-
based image classifcation models have been further developed in [OM15, OBZ17, OZH+18], by ex-
tending the wavelet decomposition to other transformation groups (see Section 5) and by integrating
them within CNN architectures as preprocessing stages.

In particular, the results from [OZH+18] demonstrate that the geometric priors of scattering
representations provide a better trade-off than data-driven models in the small-training regime, where
large capacity CNNs tend to overfit. Even first-order scattering coefficients may be used to ease
inference and learning within CNN pipelines, as demonstrated in [OBZV18].

Also, let us mention several works that considered ‘hybrid’ models between the fully-structured
scattering networks and the fully-trainable CNNs. [JvGLS16] proposed to learn convolutional filters
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Figure 8: Samples from ΩJ,ε for different values of J using the gradient descent algorithm described
in Section 6.3. Top row: original images, second row: J = 3, third row: J = 4, fourth row: J = 5,
fifth row: J = 6. The visual quality of the reconstruction is nearly perfect for J = 3 and degrades for
larger values of J .
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in the wavelet domain, leveraging the benefits of multiscale decompositions. [CW16a, CW16b, KT18]
added the structure of group convolution of the joint scattering representation of Section 5 into CNNs,
significantly improving the sample complexity.

4 Scattering Representations of Stochastic Processes
This section reviews the definitions and basic properties of the expected scattering of random processes
[Mal12, BMB+15]. We prove a version of scattering mean-square consistency for orthogonal Haar
scattering in Section 4.1.

4.1 Expected Scattering
If (X(t))t∈R is a stationary process or has stationary increments, meaning that δsX(t) = X(t)−X(t−s)
is stationary for all s, then X ? ψλ is also stationary, and taking the modulus preserves stationarity.
It follows that for any path p = (λ1, ..., λm) ∈ P∞, the process

U [p]X = |...|X ? ψλ1
| ? ...| ? ψλm |

is stationary, hence its expected value does not depend upon the spatial position t.

Definition 4.1. Let X(t) be a stochastic process with stationary increments. The expected scattering
of X is defined for all p ∈ P∞ by

SX(p) = E(U [p]X) = E(|...|X ? ψλ1
| ? ...| ? ψλm |) .

The expected scattering defines a representation for the process X(t) which carries information
on high order moments of X(t), as we shall see in later sections. It also defines a metric between
stationary processes, given by

‖SX − SY ‖2 :=
∑
p∈P∞

|SX(p)− SY (p)|2 .

The scattering representation of X(t) is estimated by computing a windowed scattering transform
of a realization x of X(t). If ΛJ = {λ = 2j ; 2−j > 2−J} denotes the set of scales smaller than J , and
PJ is the set of finite paths p = (λ1, .., λm) with λk ∈ ΛJ ∀k, then the windowed scattering at scale J
of a realization x(t) is

SJ [PJ ]x = {U [p]x ? φJ , p ∈ PJ} . (20)

Since
∫
φJ(u)du = 1, we have E(SJ [PJ ]X) = E(U [p]X) = SX(p), so SJ is an unbiased estimator

of the scattering coefficients contained in PJ . When the wavelet ψ satisfies the Littlewood-Paley
condition (9), the non-expansive nature of the operators defining the scattering transform implies
that S and SJ [PJ ] are also non-expansive, similarly as the deterministic case covered in Proposition
3.3:

Proposition 4.2. If X and Y are finite second order stationary processes, then

E(‖SJ [PJ ]X − SJ [PJ ]Y ‖2) ≤ E(|X − Y |2) , (21)
‖SX − SY ‖2 ≤ E(|X − Y |2) , (22)

in particular
‖SX‖2 ≤ E(|X|2) . (23)

The L2(Rd) energy conservation theorem (3.4) yields an equivalent energy conservation property
for the mean squared power:
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Theorem 4.3 ([Wal17], Theorem 5.1). Under the same assumptions on scattering wavelets as in
Theorem 3.4, and if X is stationary, then

E(‖SJ [PJ ]X‖2) = E(|X|2) . (24)

Expected scattering coefficients are estimated with the windowed scattering SJ [p]X = U [p]X ?ψJ
for each p ∈ PJ . If U [p]X is ergodic, SJ [p]X converges in probability to SX(p) = E(U [p]X) when
J → ∞. A process X(t) with stationary increments is said to have a mean squared consistent
scattering if the total variance of SJ [PJ ]X converges to zero as J increases:

lim
J→∞

E(‖SJ [PJ ]X − SX‖2) =
∑
p∈PJ

E(|SJ [p]X − SX(p)|2) = 0 . (25)

This condition implies that SJ [PJ ]X converges to SX with probability 1. Mean square consistent scat-
tering is observed numerically on a variety of processes, including Gaussian and non-Gaussian fractal
processes. It was conjectured in [Mal12] that Gaussian stationary processes X whose autocorrelation
RX is in L1 have a mean squared consistent scattering.

Consistency of Orthogonal Haar Scattering: We show a partial affirmative answer of this
conjecture, by considering a specific scattering representation built from discrete orthogonal real Haar
wavelets. Consider (Xn)n∈Z a stationary process defined over discrete time-steps. The orthogonal
Haar scattering transform SHJ maps 2J samples of Xn into 2J coefficients, defined recursively as

x0,k = Xk, k = 0 . . . 2J − 1

xj,k =
1

2
(xj−1,2k + xj−1,2k+1) , xj,k+2J−j =

1

2
|xj−1,2k − xj−1,2k+1| , 0 < j ≤ J, k = 0 . . . 2J−1 − 1,

SHJ X := (xJ,k; k = 0 . . . 2J − 1) . (26)

This representation thus follows a multiresolution analysis (MRA) [Mal99] but also decomposes the
details at each scale, after applying the modulus non-linearity. It is easy to verify by induction that
(26) defines an orthogonal transformation that preserves the energy: ‖SHJ x‖ = ‖x‖. However, contrary
to the Littlewood-Paley wavelet decomposition, orthogonal wavelets are defined from downsampling
operators, and therefore the resulting scattering representation SHJ is not translation invariant when
J →∞. We have the following consistency result:

Theorem 4.4 ([Bru19]). The progressive Haar Scattering operator SHJ is consistent in the class of
compactly supported linear processes, in the sense that

lim
J→∞

E(‖SHJ X − ESHJ X‖2) = 0 , (27)

for stationary processes X which can be represented as X = W ? h, where W is a white noise and h
is compactly supported.

As a consequence of Theorem 4.3, mean squared consistency implies an expected scattering energy
conservation:

Corollary 4.5. For admissible wavelets as in Theorem 4.3, SJ [PJ ]X is mean squared consistent if
and only if

‖SX‖2 = E(|X|2) .

Expected scattering coefficients depend upon normalized high order moments ofX. If one expresses
|U [p]X|2 as

|U [p]X(t)|2 = E(|U [p]X|2)(1 + ε(t)) ,
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then, assuming |ε| � 1, a first order approximation of

U [p]X(t) =
√
|U [p]X(t)|2 ≈ E(|U [p]X|2)1/2(1 + ε/2)

yields

U [p+ λ]X = |U [p]X ? ψλ| ≈
||U [p]X|2 ? ψλ|
2E(|U [p]X|2)1/2

,

thus showing that SX(p) = E(U [p]X) for p = (λ1, . . . , λm) depends upon normalized moments of X
of order 2m, determined by the cascade of wavelet sub-bands λk. As opposed to a direct estimation
of high moments, scattering coefficients are computed with a non-expansive operator which allows
consistent estimation with few realizations. This is a fundamental property which enables texture
recognition and classification from scattering representations [Bru13].

The scattering representation is related to the sparsity of the process through the decay of its
coefficients SX(p) as the order |p| increases. Indeed, the ratio of the first two moments of X

ρX =
E(|X|)

E(|X|2)1/2

gives a rough measure of the fatness of the tails of X.
For each p, the Littlewood-Paley unitarity condition satisfied by ψ gives

E(|U [p]X|2) = E(U [p]X)2 +
∑
λ

E(|U [p+ λ]X|2) ,

which yields

1 = ρU [p]X +
1

E(|U [p]X|2)

∑
λ

E(|U [p+ λ]X|2) . (28)

Thus, the fraction of energy that is trapped at a given path p is given by the relative sparsity ρU [p]X .
This relationship between sparsity and scattering decay across the orders is of particular impor-

tance for the study of point processes, which are sparse in the original spatial domain, and for regular
image textures, which are sparse when decomposed in the first level UX of the transform. In partic-
ular, the scattering transform can easily discriminate between white noises of different sparsity, such
as Bernouilli and Gaussian.

The autocovariance of a real stationary process X is denoted

RX(τ) = E
(

(X(x)− E(X)) (X(x− τ)− E(X))
)
.

Its Fourier transform R̂X(ω) is the power spectrum of X. Replacing X by X ?ψλ in the conservation
energy formula (4.3) implies that∑

p∈PJ
E(|SJ [p+ λ]X|2) = E(|X ? ψλ|2) . (29)

These expected squared wavelet coefficients can also be written as a filtered integration of the Fourier
power spectrum R̂X(ω)

E(|X ? ψλ|2) =

∫
R̂X(ω) |ψ̂(λ−1ω)|2 dω . (30)

These two equations prove that summing scattering coefficients recovers the power spectrum integral
over each wavelet frequency support, which only depends upon second-order moments of X. However,
scattering coefficients SX(p) depend upon moments of X up to the order 2m if p has a length m.
Scattering coefficients can thus discriminate textures having same second-order moments but different
higher-order moments.
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4.2 Analysis of stationary textures with scattering
Section 4.1 showed that the scattering representation can be used to describe stationary processes,
in such a way that high order moments information is captured and estimated consistently with few
realizations.

Image textures can be modeled as realizations of stationary processes X(u). The Fourier spectrum
R̂X(ω) is the Fourier transform of the autocorrelation

RX(τ) = E
(

[X(u)− E(X)][X(u− τ)− E(X)]
)
.

Despite the importance of spectral methods, the Fourier spectrum is often not sufficient to discriminate
image textures because it does not take into account higher-order moments.

Figure 9: Two different textures having the same Fourier power spectrum. (a) Textures X(u). Top:
Brodatz texture. Bottom: Gaussian process. (b) Same estimated power spectrum R̂X(ω). (c) Nearly
same scattering coefficients SJ [p]X form = 1 and 2J equal to the image width. (d) Different scattering
coefficients SJ [p]X for m = 2.

The discriminative power of scattering representations is illustrated using the two textures in
Figure 9, which have the same power spectrum and hence same second order moments. Scattering
coefficients SJ [p]X are shown for m = 1 and m = 2 with the frequency tiling illustrated in Figure 5.
The ability to discriminate the top process X1 from the bottom process X2 is measured by a scattering
distance normalized by the variance:

ρ(m) =
‖SJX1[ΛmJ ]− E(SJX2[ΛmJ ])‖2

E(‖SJX2[ΛmJ ]− E(SJX2[ΛmJ ])‖2)
.

For m = 1, scattering coefficients mostly depend upon second-order moments and are thus nearly
equal for both textures. One can indeed verify numerically that ρ(1) = 1 so both textures can not be
distinguished using first order scattering coefficients. On the contrary, scattering coefficients of order
2 are highly dissimilar because they depend on moments up to order 4, and ρ(2) = 5. A scattering
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Table 2: Decay of the total scattering variance
∑
p∈PJ E(|SJ [p]X − SX(p)|2)/E(|X|2) in percentage,

as a function of J , averaged over the Brodatz dataset. Results obtained using cubic spline wavelets.

J = 1 J = 2 J = 3 J = 4 J = 5 J = 6 J = 7
85 65 45 26 14 7 2.5

representation of stationary processes includes second order and higher-order moment descriptors of
stationary processes, which discriminates between such textures.

The windowed scattering SJ [PJ ]X estimates scattering coefficients by averaging wavelet modulus
over a support of size proportional to 2J . If X is a stationary process, Section 4.1 showed that the
expected scattering transform SX is estimated with the windowed scattering

SJ [PJ ]X = {U [p]X ? φJ , p ∈ PJ} .

This estimate is called mean-square consistent if its total variance over all paths converges:

lim
J→∞

∑
p∈PJ

E(|SJ [p]X − SX(p)|2) = 0 .

Corollary 4.5 showed that mean-square consistency is equivalent to

E(|X|2) =
∑
p∈P∞

|SX(p)|2 ,

which in turn is equivalent to

lim
m→∞

∑
p∈P∞ , |p|=m

E(|U [p]X|2) = 0 . (31)

If a process X(t) has a mean square consistent scattering, then one can recover the scaling law of its
second moments with scattering coefficients:

Proposition 4.6. Suppose that X(t) is a process with stationary increments such that SJX is mean
square consistent. Then

E(|X ? ψj |2) =
∑
p∈P∞

|SX(j + p)|2 . (32)

For a large class of ergodic processes including most image textures, it is observed numerically that
the total scattering variance

∑
p∈PJ E(|SJ [p]X−SX(p)|2) decreases to zero when 2J increases. Table

2 shows the decay of the total scattering variance, computed on average over the Brodatz texture
dataset.

Corollary 4.5 showed that this variance decay then implies that

‖SX‖2 =

∞∑
m=0

∑
p∈Λm∞

|SX(p)|2 = E(|X|2) .

Table 3 gives the percentage of expected scattering energy
∑
p∈Λm∞

|SX(p)|2 carried by paths of length
m, for textures in the Brodatz database. Most of the energy is concentrated in paths of length m ≤ 3.
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Table 3: Percentage of expected scattering energy
∑
p∈Λm∞

|SX(p)|2, as a function of the scattering
order m, computed with cubic spline wavelets, over the Brodatz dataset.

m = 0 m = 1 m = 2 m = 3 m = 4
0 74 19 3 0.3

4.3 Multifractal Analysis with Scattering Moments
Many physical phenomena exhibit irregularities at all scales, as illustrated by the canonical example
of turbulent flows or Brownian Motions. Fractals are mathematical models of stochastic processes
that express such property through a scale-invariance symmetries of the form

∀ s > 0, {X(st); t ∈ R} d
= As · {X(t); t ∈ R} . (33)

In other words, the law of the stochastic process is invariant to time dilation, up to a scale factor.
Here As denotes a random variable independent of X that controls the strength of irregularity of
sample trajectories of X(t). Fractional Brownian Motions are the only Gaussian Processes satisfying
(33) with As := sH , where H = 0.5 corresponds to the standard Wiener Process.

Fractals can be studied from wavelet coefficients through the distribution of point-wise Hölder
exponents [PT02]. Moments of order q define a scaling exponent ζ(q) such that

E[|X ? ψj |q] ' 2jζ(q) , (j → −∞)

This characteristic exponent provides rich information about the process, in particular the curvature of
ζ(q) measures the presence of different Holder exponents within a realisation, and can be interpreted
as a measure of intermittency. Intermittency is an ill-defined mathematical notion, which is used
in physics to describe those irregular bursts of large amplitude variations, appearing for example in
turbulent flows [YSO+11]. Multiscale intermittency appears in other domains such as network traffics,
financial time series, geophysical and medical data.

Intermittency is created by heavy tail processes, such as Lévy processes. It produces large if not
infinite polynomial moments of degree larger than two, and empirical estimations of second order
moments have a large variance. These statistical instabilities can be reduced by calculating expected
values of non-expansive operators in mean-square norm, which reduce the variance of empirical esti-
mation. Scattering moments are computed with such a non-expansive operator.

In [BMB+15], it is shown that second-order scattering moments provide robust estimation of such
intermittency through the following renormalisation scheme. In the univariate case, we consider for
each j, j1, j2 ∈ Z

S̃X(j) :=
E[|X ? ψj |]
E[|X ? ψ0|]

, S̃X(j1, j2) =
E[||X ? ψj1 | ? ψj2 |]

E[|X ? ψj1 |]
. (34)

This renormalised scattering can be estimated by plug-in of both numerator and denominator using
the windowed scattering estimators (20). These renormalised scattering moments capture both self-
similarity and intermittence, as illustrated by the following result.

Proposition 4.7 ([BMB+15], Proposition 3.1). Let X(t) be a self-similar process (33) with stationary
increments. Then for all j1 ∈ Z

S̃X(j1) = 2j1H , (35)

and for all (j1, j2) ∈ Z2

S̃X(j1, j2) = SX̃(j2 − j1) with X̃(t) =
|X ? ψ(t)|
E(|X ? ψ|) . (36)
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Moreover, the discrete curvature ζ(2)− 2ζ(1) satisfies

2j(ζ(2)−2ζ(1)) ' E(|X ? ψj |2)

E(|X ? ψj |)2
≥ 1 +

+∞∑
j2=−∞

|S̃X(j, j2)|2 . (37)

This proposition illustrates that second-order scattering coefficients S̃X(j1, j2) of self-similar pro-
cesses are only function of the difference j2 − j1, which can be interpreted as a stationarity property
across scales. Moreover, it follows from (37) that if

∑+∞
j2=−∞ S̃X(j, j2)2 ' 2jβ as j → −∞ with β < 0,

then ζ(2)−2ζ(1) < 0. Therefore, the decay of S̃X(j, j+l) with l (or absence thereof) captures a rough
measure of intermittency. Figure 10 illustrates the behavior of normalised scattering coefficients for
three representative processes, Poisson point processes, Fractional Brownian Motions and Mandelbrot
Cascades. The asymptotic decay of scattering moments clearly distinguishes the different intermittent
behavior. [BMB+15] explores the applications of such scattering moments to perform model selection
in real-world applications, such as turbulent flows and finantial time-series.
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Figure 10: Top row: Realizations of a Brownian Motion, a Poisson point process, a Levy process and
a Multifractal Random Cascade. Bottom Row: corresponding normalized second-order coefficietns.

5 Non-Euclidean Scattering
Scattering representations defined over the translation group are extended to other global transfor-
mation groups by defining Littlewood-Paley wavelet decompositions on non-Euclidean domains with
group convolutions. Wavelet decompositions can also be defined on domains lacking global symme-
tries such as graphs and manifolds. In this section we present this formalism and discuss several
applications.

5.1 Joint versus Separable Scattering
Let us consider the question of building a signal representation Φ(x) that is invariant to the action of
a certain transformation group G acting on L2(Rd):

G× L2(Rd) → L2(Rd)
(g,x) 7→ xg .

Φ is G-invariant if Φ(xg) = Φ(x) for all g ∈ G, and G-equivariant if Φ(xg) = (Φ(x))g, that is, G acts
on the image of Φ respecting the axioms of a group action.

Now, suppose that the group G admits a factorization as a semidirect product of two subgroups
G1, G2:

G = G1 oG2 .
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Figure 11: From [SM13]. The left and right textures are not discriminated by a separable invariant
along rotations and translations, but can be discriminated by a joint invariant.

This means that G1 is a normal subgroup of G and that each element g ∈ G can be uniquely written
as g = g1g2, with gi ∈ Gi. It is thus tempting to leverage group factorizations to build invariants to
complex groups by combining simpler invariants and equivariants as building blocks.

Suppose Φ1 is G1-invariant and G2-equivariant, and Φ2 is G2-invariant. Then Φ̄ := Φ2◦Φ1 satisfies,
for all (g1, g2) ∈ G1 oG2

Φ̄(xg1g2) = Φ2((Φ1(x))g2
) = Φ2(Φ1(x)) = Φ̄(x) ,

showing that we can effectively build larger invariants by composing simpler invariants and equivari-
ants.

However, such compositional approach comes with a loss of discriminative power [SM13]. Indeed,
whereas the group can be factorised into smaller groups, the group action that acts on the data is
seldom separable, as illustrated in Figure 11. In the case of images x ∈ L2(R2), an important example
comes from the action of general affine transformations of R2. This motivates the construction of joint
scattering representations in the roto-translation group, discussed next.

5.2 Scattering on Global Symmetry Groups
We illustrate the ideas from Section 5.1 with the construction of a scattering representation over the
roto-translation group for images, developed in [SM13, OM15], the Heisenberg group of frequency
transpositions [AM14, ALM18], and SO(3) for quantum chemistry [HMP17, EEHM17]. In essence,
these representation adapt the construction of Section 3 by defining appropriate wavelet decomposi-
tions over the roto-translation group.

Roto-Translation Group: The roto-translation group is formed by pairs g = (v, α) ∈ R2 × SO(2)
acting on u ∈ Ω as follows:

(g, u) 7→ g.u := v +Rαu ,

where Rα is the rotation of the plane of angle α. One can easily verify that the set of all pairs (v, α)
forms a group GRot ' R2 o SO(2), with the multiplication defined as

(v1, α1).(v2, α2) = (v1 +Rα1
v2, α1 + α2) .

The group acts on images x(u) by the usual composition: xg := x(g−1.u).

Wavelet decompositions over a compact group are obtained from group convolutions, defined as
weighted averages over the group. Specifically, if x̃ ∈ L2(G) and h ∈ L1(G), the group convolution of
x with the filter h is

x̃ ?G h(g) :=

∫
G

xgh(g−1)dµ(g) . (38)
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Fast computations of roto-translation convolutions with
separable wavelet filters Ψθ2,j2,k2(u, θ) = ψθ2,j2(u)ψk2

(θ)
are performed by factorizing

Y ⍟Ψθ2,j2,k2(u, θ)
= ∑

θ′
(∑

u′
Y (u′, θ′)ψθ2,j2(r−θ′(u − u′))) ψk2

(θ − θ′) .

It is thus computed with a two-dimensional convolution of
Y (u, θ′) with ψθ2,j2(r−θu) along u = (u1, u2), followed
by a convolution of the output and a one-dimensional cir-
cular convolution of the result with ψk2

along θ. Figure 5
illustrates this convolution which rotates the spatial support
ψθ2,j2(u) by θ while multiplying its amplitude by ψk2

(θ).

θ

u1
u2

ψθ2,j2(u1, u2)

ψk2
(θ)

Figure 5: A three dimensional roto-translation convolution
with a wavelet Ψθ2,j2,k2(u1, u2, θ) can be factorized into a
two dimensional convolution with ψθ2,j2(u1, u2) rotated by
θ and a one dimensional convolution with ψk2

(θ) .

Applying W̃3 = W̃2 to U2x computes second order scat-
tering coefficients as a convolution of Y (g) = U2x(g, p2)
with ΦJ(g), for p2 fixed:

S2x(p2) = U2(., p2)x⍟ΦJ(g) . (18)

It also computes the next layer of coefficients U3x with
a roto-translation convolution of U2x(g, p2) with the
wavelets (13,14,15). In practice, we stop at the second or-
der because the coefficients of U3x carry a small amount of
energy, and have little impact on classification. One can in-
deed verify that the energy of Umx decreases exponentially
to zero as m increases.

The output roto-translation of a second order scattering
representation is a vector of coefficients:

Sx = (S0x(u) , S1x(p1) , S2x(p2)) , (19)

with p1 = (u, θ1, j1) and p2 = (u, θ1, j1, θ2, j2, k2). The
spatial variable u is sampled at intervals 2J which corre-
sponds to the patch size. If x is an image of N2 pixels,

there are thus 2−2JN2 coefficients in S0x and 2−2JN2J
coefficients in S1x. Second order coefficients have a negli-
gible amplitude if j2 ≤ j1. If the wavelet are rotated along
K angles θ then one can verify that S2x has approxima-
tively 2−2JN2J(J − 1)K log2 K/2 coefficients. The to-
tal roto-translatation patch scattering Sx is of dimension
341N2/1024 for J = 5 and K = 8. The overall complexity
to compute this roto-translation scattering representation is
O(K2N2 logN).
4. Scaling Invariance of Log Scattering

Roto-translation scattering is computed over image
patches of size 2J . Above this size, perspective effects pro-
duce important scaling variations for different patches. A
joint scale-rotation-translation invariant must therefore be
applied to the scattering representation of each patch vector.
This is done with an averaging along the scale and transla-
tion variables, with a filter which is rotationally symmetric.
One could recover the high frequencies lost by this averag-
ing and compute a new layer of invariant through convo-
lutions on the joint scale-rotation-translation group. How-
ever, adding this supplementary information does not im-
prove texture classification, so this last invariant is limited
to a global scale-space averaging.

The roto-translation scattering representations of all
patches at a scale 2J is given by

Sx = (x ⋆ φJ(u) , U1x⍟ΦJ(p1) , U2x⍟ΦJ(p2)) ,

with p1 = (u, θ1, j1) and p2 = (u, θ1, j1, θ2, j2, k2). This
scattering vector Sx is not covariant to scaling. If xi(u) =
x(2iu) then

Sxi = (x ⋆ φJ+i(2iu) , U1x⍟ΦJ+i(2i.p1)
U2x⍟ΦJ+i(2i.p2)) .

with 2i.p1 = (2iu, θ1, j1 + i) and 2i.p2 = (2iu, θ1, j1 +
i, θ2, j2 + i, k2). A covariant representation to scaling stores
the minimal subset of coefficients needed to recover all Sxi.
It thus require to compute the scattering coefficients for all
scales j1+ i and j2+ i for all averaging kernels φJ+i or ΦJ+i,
similarly to spatial pyramid [16].

One can show that scattering coefficient amplitudes have
a power law decay as a function of the scales 2j1 and 2j2 .
To estimate an accurate average from a uniform sampling of
the variables j1 and j2, it is necessary to bound uniformly
the variations of scattering coefficient as a function of j1 and
j2. This is done by applying a logarithm to each coefficient
of Sx, which nearly linearizes the dependency upon j1 and
j2. This logarithm plays a role which is similar to renor-
malizations used in bag of words [10] and deep convolution
networks [5].

12351235123512371237

Figure 12: From [SM13]. A Wavelet defined on the Roto-Translation group, displayed in the 3D
domain defined by positions u1, u2 and angles θ.

Here µ is the uniform Haar measure over G. One can immediately verify that group convolutions
are the only linear operators which are equivariant with respect to the group action: x̃g′ ?G h(g) =
x̃ ?G h((g′)−1.g) for all g, g′ ∈ G.

Given an input x(u), u ∈ Ω ⊂ R2, we consider first a wavelet decomposition over the transla-
tion group W1 = {ψj,θ}θ∈SO(2),j∈Z, with dilations and rotations of a given mother wavelet. The
corresponding propagated wavelet modulus coefficients become

U1(x)(p1) = |x ? ψj1,θ1 |(u) , with p1 := (u, j1, θ1) .

This vector of coefficients is equivariant with respect to translations, since it is defined through spa-
tial convolutions and point-wise nonlinearities. We verify that it is also equivariant with respect to
rotations, since

U1(rαx)(u, j1, θ1) = U1(x)(r−αu, j1, θ1 − α) .

In summary, the first layer U1 is GRot-equivariant, U1(xg) = [U1(x)]g, with group action on the
coefficients g.p1 = (g.u, j1, θ1 − α), for g = (v, α) ∈ GRot.

While the original Scattering operator from Section 3 would now propagate each sub-band of
U1x independently using the same wavelet decomposition operator, roto-translation scattering now
considers a joint wavelet decomposition W2 defined over functions of GRot in that case. Specifically,
W2 = {Ψγ}γ is a collection of wavelets defined in L1(GRot). In [SM13, OM15] these wavelets are
defined as separable products of spatial wavelets defined in Ω ⊂ R2 with 1d wavelets defined in
SO(2). Figure 12 illustrates one such Ψγ .

Importantly, the geometric stability and energy conservation properties described in Sections 3.2
and 3.3 carry over the roto-translation scattering [Mal12, OM15]. As discussed earlier, addressing the
invariants jointly or separately gives different discriminability tradeoffs. Some numerical applications
greatly benefit from the joint representatation, in particular texture recognition under large point of
view variability [SM13].

Time-Frequency Scattering: Joint scattering transforms also appear naturally in speech and
audio processing, to leverage interactions of the signal energy at different time-frequency scales. Suc-
cessful recognition of audio signals requires stability to small time-warps as well as frequency trans-
positions. Similarly as in the previous example, where the input x(u) was ‘lifted’ to a function over
the roto-translation group with appropriate equivariance properties, in the case of audio signals this
initial lifting is carried out by the so-called scalogram, which computes a Littlewood-Paley wavelet
decomposition mapping a time-series x(t) to a two-dimensional function z(t, λ) = |x ? ψλ(t)| [AM14].
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Figure 1: Left: Real parts of 2D solid harmonic wavelets  `,j(u). The ` parameters increases from
0 to 4 vertically where as the scale 2j increases from left to right. Cartesian slices of 3D spherical
harmonic wavelets yield similar patterns. Right: Solid harmonic wavelet moduli S[j, `, 1](⇢x)(u) =
|⇢x ⇤  j,`|(u) of a molecule ⇢x. The interference patterns at the different scales are reminiscent of
molecular orbitals obtained in e.g. density functional theory.

Figure 2: Mean absolute error (MAE) on the validation set as a function of the number of training
points used. We observe a fast drop to low estimation errors with as few as 2000 training examples.
While it is still always better to sample more of chemical space, it shows that the representation
carries useful information easily amenable to further analysis, while keeping sufficient complexity to
benefit from when more datapoints are available.

Here we extend the interactions to an arbitrary number of multiplicative factors. We optimize the
parameters of the multilinear model by minimizing a quadratic loss function

L(y, ⇢x) = (y � Ẽr(⇢x))2

using the Adam algorithm for stochastic gradient descent [11]. The model described above is
non-linear in the parameter space and therefore it is reasonable to assume that stochastic gradient
descent will converge to a local optimum. We find that we can mitigate the effects of local optimum
convergence by averaging the predictions of multiple models trained with different initializations2.

4 Numerical Experiments on Chemical Databases

Quantum energy regressions are computed on two standard datasets: QM7 (GDB7-12) [18] has
7165 molecules of up to 23 atoms among H, C, O, N and S, and QM9 (GDB9-14) [17] has 133885

2For implementation details see http://www.di.ens.fr/data/software/

6

Figure 13: From [EEHM17]. Left: Real parts of 2D solid harmonic wavelets. Cartesian slices
of 3D spherical harmonic wavelets yield similar patterns. Right: Solid harmonic wavelet moduli
S[j, l, 1](ρx)(u) = |ρx ? ψj |(u) of a molecule ρx. The interference patterns at the different scales are
reminiscent of molecular orbitals obtained in e.g. density functional theory.

The time-frequency interactions in z can be captured by a joint wavelet decomposition frame, leading
to state-of-the-art classification and synthesis on several benchmarks [ALM18].

Solid Harmonic Scattering for Quantum Chemistry Building representations of physical sys-
tems with rotational and translational invariance and stability to deformations is of fundamental
importance across many domains, since these symmetries are present in many physical systems.
Specifically, [HMP17, EEHM17] study scattering representations for quantum chemistry, by consid-
ering a wavelet decomposition over SO(3). Such wavelet decomposition is constructed in the spectral
domain, given by spherical harmonics. The resulting scattering representation enjoys provable roto-
translational invariance and stability to small deformations, and leads to state-of-the-art performance
in the regression of molecular energies [EEHM17]. Figure 13 illustrates the ‘harmonic’ wavelets as
well as the resulting scattering coefficients for some molecules.

5.3 Graph Scattering
In Section 5.2 we described invariant representations of functions defined over a fixed domain with
global symmetries. Despite being of fundamental importance in physics, global symmetries are lacking
in many systems in other areas of science, such as networks, surface meshes, or proteins. In those
areas, one is rather interested in local symmetries, and often the domain is variable, as well as the
measurements over that domain.

5.3.1 Invariance and Stability in Graphs

In this context, graphs are flexible data structures that enable general metric structures and modeling
non-Euclidean domains. The main ingredients of the scattering transform can be generalized using
tools from computational harmonic analysis on graphs. As described in Section 2.3, the Euclidean
treatment of deformations as changes of variables in the signal domain Ω ⊂ Rd, u 7→ ϕτ (u) = u−τ(u),
can now be seen more generally as a change of metric, from an original metric domain X to a deformed
metric domain Xτ .

We shall thus focus on deformations on the underlying graph domain, while keeping the same
function mapping, i.e. we model deformations as a change of the underlying graph support and
analyze how this affects the interaction between the function mapping and the graph. Similarly as
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with the Group Scattering constructions of Section 5.2, defining scattering representations for graphs
amounts to defining wavelet decompositions with appropriate equivariance and stability, and averaging
operators providing the invariance.

Consider a weighted, undirected graph G = (V,E,W ) with |V | = n nodes, edge set E and
adjacency matrix W ∈ Rn×n, with Wi,j > 0 iff (i, j) ∈ E. In this context, the natural notion
of invariance is given by permutations acting simultaneously on nodes and edges. Let us define
Gπ = (Ṽ , Ẽ, W̃ ) such that there exists a permutation π ∈ Sn with ṽi = vπ(i), (̃i, j̃) ∈ Ẽ iff (π(i), π(j)) ∈
E and W̃ = ΠWΠ>, where Π ∈ {0, 1}n×n is the permutation matrix associated with π. Many
applications require a representation Φ such that Φ(x;G) = Φ(xπ, Gπ) = Φ(x, G) for all π.

Previously, Littlewood-Paley wavelets were designed as a non-expansive operator ‖W‖ ≤ 1 with
small commutation error with respect to deformations: ‖[W,Lτ ]‖ . ‖∇τ‖. The first task is to quantify
metric perturbations Xτ induced by deforming the graph.

5.3.2 Diffusion Metric Distances

A weighted, undirected graph G = (V,E,W ) with |V | = n nodes, edge set E and adjacency matrix
W ∈ Rn×n defines a diffusion process A on its nodes, given in its symmetric form by the normalized
adjacency

W := D−1/2WD−1/2 , with D = diag(d1, . . . , dn) , (39)

where di =
∑

(i,j)∈EWi,j denotes the degree of node i. Denote by d = W1 the degree vector containing
di in the i-th element. By construction, W is well-localized in space (it is nonzero only where there is
an edge connecting nodes), it is self-adjoint and satisfies ‖W‖ ≤ 1, where ‖W‖ is the operator norm.
It is convenient to assume that the spectrum of A (which is real and discrete since W is self-adjoint
and in finite-dimensions) is non-negative. Since we shall be taking powers ofW , this will avoid folding
negative eigenvalues into positive ones. For that purpose, we adopt the so-called lazy diffusion, given
by T = 1

2 (I +W ). We will use this diffusion operator to define both a multiscale wavelet filter bank
and a low-pass average pooling, leading to the diffusion scattering representation.

This diffusion operator can be used to construct a metric on G. The so-called diffusion maps
[CL06, NLCK06] measure distances between two nodes x, x′ ∈ V in terms of their associated diffusion
at time s: dG,s(x, x′) = ‖T sGδx − T sGδx′‖, where δx is a vector with all zeros except a 1 in position
x. This diffusion metric can be now used to define a distance between two graphs G,G′. Assuming
first that G and G′ have the same size, the simplest formulation is to compare the diffusion metric
generated by G and G′ up to a node permutation:

Definition 5.1. Let G = (V,E,W ), G′ = (V ′, E′,W ′) have the same size |V | = |V ′| = n. The
normalized diffusion distance between graphs G, G′ at time s > 0 is

ds(G,G′) := inf
Π∈Πn

‖(T sG)∗(T sG)−Π>(T sG′)
∗(T sG′)Π‖ = inf

Π∈Πn
‖T 2s

G −Π>T 2s
G′Π‖ , (40)

where Πn is the space of n× n permutation matrices.

The diffusion distance is defined at a specific time s. As s increases, this distance becomes weaker3,
since it compares points at later stages of diffusion. The role of time is thus to select the smoothness
of the ‘graph deformation’, similarly as ‖∇τ‖ measures the smoothness of the deformation in the
Euclidean case. For convenience, we denote d(G,G′) = d1/2(G,G′) and use the distance at s = 1/2
as our main deformation measure. The quantity d defines a distance between graphs (seen as metric
spaces) yielding a stronger topology than other alternatives such as the Gromov-Hausdorff distance,
defined as

dsGH(G,G′) = inf
Π

sup
x,x′∈V

|dsG(x, x′)− dsG′(π(x), π(x′))|

3In the sense that it defines a weaker topology, i.e., limm→∞ ds(G,Gm) → 0 ⇒ limm→∞ ds′ (G,Gm) = 0 for s′ > s,
but not vice-versa.
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with dsG(x, x′) = ‖T tG(δx − δx′)‖L2(G) . Finally, we consider for simplicity only the case where the
sizes of G and G′ are equal, but definition (5.1) can be naturally extended to compare variable-sized
graphs by replacing permutations by soft-correspondences [see BBK+10].

Our goal is to build a stable and rich representation ΦG(x). The stability property is stated in
terms of the diffusion metric above: For a chosen diffusion time s, ∀ x ∈ Rn , G = (V,E,W ), G′ =
(V ′, E′,W ′) with |V | = |V ′| = n , we want

‖ΦG(x)− ΦG′(x)‖ . ‖x‖d(G,G′) . (41)

This representation can be used to model both signals and domains, or just domains G, by considering
a prespecified x = f(G), such as the degree, or by marginalizing from an exchangeable distribution,
ΦG = Ex∼QΦG(x).

The motivation of (41) is two-fold: On the one hand, we are interested in applications where
the signal of interest may be measured in dynamic environments that modify the domain, e.g. in
measuring brain signals across different individuals. On the other hand, in other applications, such as
building generative models for graphs, we may be interested in representing the domain G itself. A
representation from the adjacency matrix of G needs to build invariance to node permutations, while
capturing enough discriminative information to separate different graphs. In particular, and similarly
as with Gromov-Hausdorff distances, the definition of d(G,G′) involves a matching problem between
two kernel matrices, which defines an NP-hard combinatorial problem. This further motivates the
need for efficient representations of graphs ΦG that can efficiently tell apart two graphs, and such that
`(θ) = ‖ΦG − ΦG(θ)‖ can be used as a differentiable loss for training generative models.

5.3.3 Diffusion Wavelets

Diffusion wavelets [CL06] provide a simple framework to define a multi-resolution analysis from powers
of a diffusion operator defined on a graph, and they are stable to diffusion metric changes.

Let λ0 ≥ λ1 ≥ . . . λn−1 denote the eigenvalues of A in decreasing order. Defining d1/2 =
(
√
d1, . . . ,

√
dn), one can easily verify that the normalized squared root degree vector v = d1/2/‖d1/2‖2 =

d/‖d‖1 is the eigenvector with associated eigenvalue λ0 = 1. Also, note that λn−1 = −1 if and only
if G has a connected component that is non-trivial and bipartite [CG97].

Following [CL06], we construct a family of multiscale filters by exploiting the powers of the diffusion
operator T 2j . We define

ψ0 := I − T , ψj := T 2j−1

(I − T 2j−1

) = T 2j−1 − T 2j , (j > 0) . (42)

This corresponds to a graph wavelet filter bank with optimal spatial localization. Graph diffusion
wavelets are localized both in space and frequency, and favor a spatial localization, since they can
be obtained with only two filter coefficients, namely h0 = 1 for diffusion T 2j−1

and h1 = −1 for
diffusion T 2j . The finest scale ψ0 corresponds to one half of the normalized Laplacian operator
ψ0 = (1/2)∆ = 1/2(I − D−1/2WD−1/2), here seen as a temporal difference in a diffusion process,
seeing each diffusion step (each multiplication by ∆) as a time step. The coarser scales ψj capture
temporal differences at increasingly spaced diffusion times. For j = 0, . . . , Jn − 1, we consider the
linear operator

W : L2(G) → (L2(G))Jn

x 7→ (ψjx)j=0,...,Jn−1 , (43)

which is the analog of the wavelet filter bank in the Euclidean domain. Whereas several other options
exist to define graph wavelet decompositions [RG13, GNC10], we consider here wavelets that can be
expressed with few diffusion terms, favoring spatial over frequential localization, for stability reasons
that will become apparent next. We choose dyadic scales for convenience, but the construction is
analogous if one replaces scales 2j by dγje for any γ > 1 in (42). If the graph G exhibits a spectral
gap, i.e., βG = supi=1,...n−1 |λi| < 1, the linear operator W defines a stable frame.
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Proposition 5.2 ([GRB18], Prop 4.1). For each n, let W define the diffusion wavelet decomposition
(43) and assume βG < 1. Then there exists a constant 0 < C(β) depending only on β such that for
any x ∈ Rn satisfying 〈x,v〉 = 0,

C(β)‖x‖2 ≤
Jn−1∑
j=0

‖ψjx‖2 ≤ ‖x‖2 . (44)

This proposition thus provides the Littlewood-Paley bounds of W, which control the ability of
the filter bank to capture and amplify the signal x along each ‘frequency’. We note that diffusion
wavelets are neither unitary nor analytic and therefore do not preserve energy. However, the frame
bounds in Proposition 5.2 provide lower bounds on the energy lost. They also inform us about how
the spectral gap β determines the appropriate diffusion scale J : The maximum of p(u) = (ur − u2r)2

is at u = 2−1/r, thus the cutoff r∗ should align with β as r∗ = −1
log2 β

, since larger values of r capture
energy in a spectral range where the graph has no information. Therefore, the maximum scale can be
adjusted as J = d1 + log2 r∗e = 1 +

⌈
log2

(
−1

log2 β

)⌉
.

5.3.4 Diffusion Scattering

Recall that the Euclidean Scattering transform is constructed by cascading three building blocks: a
wavelet decomposition operator, a pointwise modulus activation function, and an averaging operator.
Following the Euclidean scattering, given a graph G and x ∈ L2(G), we define an analogous Diffusion
Scattering transform SG(x) by cascading three building blocks: the Wavelet decomposition operator
W, a pointwise activation function ρ, and an average operator A which extracts the average over
the domain. The average over a domain can be interpreted as the diffusion at infinite time, thus
Ax = limt→∞ T tx = 〈v,x〉. More specifically, we consider a first layer transformation given by

SG[Λ1]x) = AρWx = {Aρψjx}0≤j≤Jn−1 , , (45)

followed by second order coefficients

SG[Λ2]x) = AρWρWx = {Aρψj2ρψj1x}0≤j1,j2≤Jn−1 , , (46)

and so on. The representation obtained from m layers of such transformation is thus

SG,m(x) = {Ax, SG[Λ1](x), . . . , SG[Λm](x)} = {A(ρW)kx ; k = 0, . . . ,m− 1} . (47)

5.3.5 Stability and Invariance of Diffusion Scattering

The scattering transform coefficients SG(x) obtained after m layers are given by (47), for low-pass
operator A such that Ax = 〈v,x〉.

The stability of diffusion wavelets with respect to small changes of the diffusion metric can be
leveraged to obtain a resulting diffusion scattering representation with prescribed stability, as shown
by the following Theorem.

Theorem 5.3 ([GRB18], Theorem 5.3). Let G,G′ be two graphs and let d(G,G′) be their distance
measured as in (40). Let β− = min(βG, βG′), β+ = max(βG, βG′) and assume β+ < 1. Then, we have
that, for each k = 0, . . . ,m− 1, the following holds

‖SG,m(x)− SG′,m(x)‖2 ≤
m−1∑
k=0

[(
2

1− β−
d(G,G′)

)1/2

+ k

√
β2

+(1 + β2
+)

(1− β2
+)3

d(G,G′)

]2

‖x‖2 (48)

. md(G,G′)‖x‖2 if d(G,G′)� 1.
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Figure 14: From [GBR19]. a: Difference in representation between the signal defined using the original
graph scattering SG and SG′ corresponding to the deformed graph as a function of the perturbation
size d(G,G′). b-c Classification accuracy as a function of perturbation for the authorship attribution
and the Facebook graph, respectively.

This result shows that the closer the graphs are in terms of the diffusion metric, the closer their
scattering representations will be. The constant is given by topological properties, the spectral gaps
of G and G′, as well as design parameters, the number of layers m. We observe that the stability
bound grows the smaller the spectral gap is and also as more layers are considered. The spectral
gap is tightly linked with diffusion processes on graphs, and thus it does emerge from the choice of
a diffusion metric. Graphs with values of β closer to 1 exhibit weaker diffusion paths, and thus a
small perturbation on the edges of these graphs would lead to a larger diffusion distance. We also
note that the spectral gap appears in our upper bounds, but it is not necessarily sharp. In particular,
the spectral gap is a poor indication of stability in regular graphs, and we believe our bound can be
improved by leveraging structural properties of regular domains.

Finally, we note that the size of the graphs impacts the stability result inasmuch as it impacts
the distance measure d(G,G′). A similar scattering construction was developed in [ZL18], where the
authors established stability with respect to a graph measure that depends on the spectrum of the
graph through both eigenvectors and eigenvalues. More specifically, it is required that the spectrum
gets concentrated as the graphs grow. However, in general, it is not straightforward to relate the
topological structure of the graph with its spectral properties.

As mentioned above, the stability is computed with a metric d(G,G′) which is stronger than
what could be hoped for. This metric is permutation-invariant, in analogy with the rigid translation
invariance in the Euclidean case, and stable to small perturbations around permutations. Recently,
[GBR19] extended the previous stability analysis to more general wavelet decompositions and using
a relative notion of deformation. Figure 14 illustrates the performance of Graph Scattering operators
on several graph signal processing tasks. Also, [GWH19] developed a similar scattering representation
for graphs, achieving state-of-the-art results on several graph classification tasks. The extension of
(48) to weaker metrics, using e.g. multiscale deformations, is an important open question.

5.3.6 Unsupervised Haar Scattering on Graphs

A particularly simple wavelet representation on graphs – that avoids any spectral decomposition – is
given by Haar wavelets [GNC10]. Such wavelets were used in the first work that extended scattering
representations to graphs in [CCM14]. Given an undirected graph G = (V,E), an orthogonal Haar
Scattering transform is obtained from a multiresolution approximation of G. Let G0 := G. In the
dyadic case |V | = 2J , it is defined as a hierarchical partition {Vj,n}j,n of G of the form

V0,i = {i}, i ≤ 2J Vj+1,i = Vj,ai t Vj,bi , i = 1 ≤ 2J−j−1 ,

where the pairings (ai, bi) are connected in the induced subsampled graph Gj = (Vj , Ej) of size
|Vj | = 2J−j , whose vertices are precisely Vj := {Vj,i}i and its edges are inherited recursively from
Gj−1: (i, i′) ∈ Ej iff there exists ē = (̄i, ī′) ∈ Ej−1 with ī ∈ Vj,i and ī′ ∈ Vj,i′ .
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Let x ∈ l2(G). By rearranging the pairings sequentially, the resulting orthogonal Haar Scattering
representation SJx is defined recursively as

S0x(i, 0) := x(i) , i = 1 . . . 2J (49)
Sj+1x(i, 2q) := Sjx(ai, q) + Sjx(bi, q),

Sj+1x(i, 2q + 1) := |Sj(ai, q)− Sj(bi, q)| , i = 1 . . . 2J−j−1, q = 2j .

One easily verifies [CCM14, CCM16] that the resulting transformation preserves the number of coeffi-
cients (equal to 2J), and is contractive and unitary up to a normalization factor 2J/2. However, since
the multiresolution approximation defines an orthogonal transformation, the resulting orthogonal sca-
tering coefficients are not permutation invariant. In order to recover an invariant representation, it is
thus necessary to average an ensemble of orthogonal transforms using different multiresolution approx-
imations. Nevertheless, the main motivation in [CCM14, CCM16] was to perform graph scattering
on domains with unknown (but presumed) graph connectivity structure. In that case, the sparsity
of scattering coefficients was used as a criteria to find the optimal multiresolution approximation,
resulting in state-of-the-art performance on several graph classification datasets.

5.4 Manifold Scattering
In the previous sections we have seen some instances of extending scattering representations to non-
Euclidean domains, including compact Lie Groups and graphs. Such extensions (which in fact also
apply to the wider class of Convolutional Neural Network architectures; see [BBL+16] for an in-depth
review) can be understood from the lens of the spectrum of differential operators, in particular the
Laplacian. Indeed, the Laplacian operator encapsulates the symmetries and stability requirements
that we have been manipulating so far, and can be defined across many different domains.

In particular, if M denotes a compact, smooth Riemannian manifold without boundary, one
can define the Laplace-Beltrami operator ∆ in M as the divergence of the manifold gradient. In
these conditions −∆ is self-adjoint and positive semi-definite, therefore its eigenvectors define an
orthonormal basis of L2(M, µ), where µ is the uniform measure on M. Expressing any f ∈ L2(M)
in this basis amounts to computing a ‘Fourier transform’ on M. Indeed, the Laplacian operator in
Rd is precisely diagonal in the standard Euclidean Fourier basis. Convolutions in the Euclidean case
can be seen as linear operators that diagonalise in the Fourier basis, or equivalently that commute
with the Laplacian operator. A natural generalisation of convolutions to non-Euclidean domainsM
is thus to formally see them as linear operators that commute with the Laplacian defined in M
[BZSL13, BBL+16]. Specifically, if {ϕk}k are the eigenvectors of ∆ and Λ := {λk}k its eigenvalues, a
function of spectral multipliers η : Λ→ R defines a kernel inM:

Kη(u, v) =
∑
k

η(λk)ϕk(u)ϕk(v) , u, v ∈M ,

and a ‘convolution’ from its corresponding integral operator:

L2(M) → L2(M)

x 7→ (Tηx)(u) =

∫
Kη(u, v)x(v)µ(dv). (50)

In [PWH18], the authors use this formalism to build scattering representations on Riemannian
manifolds, by defining Littlewood-Paley wavelet decompositions from appropriately chosen spectral
multipliers (ηj)j . The resulting scattering representation is shown to be stable to additive noise and
to smooth diffeomorphisms ofM.
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6 Generative Modeling with Scattering
In this Section we discuss applications of scattering representation to build high-dimensional generative
models. Data priors defined from the scattering representation enjoy geometric stability and may be
used as models for stationary processes or to regularize ill-posed inverse problems.

6.1 Scattering Sufficient Statistics
Defining probability distributions of signals x(u) ∈ L2(Rd) is a challenging task due to the curse of
dimensionality and the lack of tractable analytic models of “real" data. A powerful framework to
approach this challenge is to rely on the principle of maximum entropy: construct probability models
that are maximally regular while satisfying a number of constraints given by a vector Φ(x) ∈ RK
of sufficient statistics that is fit to the available data. When Φ(x) = xx> consists in covariance
measurements, the resulting maximum entropy model is a Gaussian Process, and when Φ(x) computes
local potentials one obtains Markov Random Fields instead. In either case, one is quickly confronted
with fundamental challenges, either statistical (exponential sample complexity for powerful statistical
models, or large bias in small parametric ones) or computational, coming from the intractability of
computing partition functions and sampling in high-dimensions.

Sufficient statistics in a maximum-entropy model capture our prior information about “what mat-
ters" in the input data. In this Section, we shall explore maximum entropy models where sufficient
statistics are given by scattering representations. Depending on the localization scale 2J , two distinct
regimes emerge. For fixed and relatively small scale, windowed scattering representations provide local
statistics that are nearly invertible, and help regularize ill-posed inverse problems (Section 6.4). As
J →∞, expected scattering moments may be used to define models for stationary processes (Section
6.5).

Thanks to the scattering mean-squared consistency discussed in Section 4, we can circumvent the
aforementioned challenges of maximum entropy models with the so-called microcanonical models from
statistical physics, described in Section 6.2. In both regimes an important algorithmic component will
be to solve a problem of the form minx ‖S(x) − y‖. We first discuss a gradient descent strategy for
that purpose in Section 6.3.

6.2 Microcanonical Scattering Models
Suppose first that we wish to characterize a probability distribution µ over input signals x ∈ D =
L2(Rd), from the knowledge that SJ(x) ≈ y. In this setup, one could think of y as being an empirical
average

y =
1

n

n∑
i=1

SJ(xi),

where xi are training samples that are conditionally independent and identically distributed.
Recall that the differential entropy of a probability distribution µ which admits a density p(x)

relatively to the Lebesgue measure is

H(µ) := −
∫
p(x) log p(x) dx . (51)

In absence of any other source of information, the classic macrocanonical model from Boltzmann
and Gibbs µma has density pma with maximum entropy, conditioned on Epma

(SJ(x)) = y. Instead,
a microcanonical model replaces the expectation constraint with an empirical constraint of the form
‖SJ(x)− y‖ ≤ ε for small, appropriately chosen ε .

Despite being in appearance similar models, microcanonical and macrocanonical models have pro-
found differences. On the one hand, under appropriate conditions, macrocanonical models may be
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expressed as Gibbs distributions of the form

pma(x) =
e〈θ,SJ (x)〉

Zθ
,

where Zθ is the normalizing constant or partition function, and θ is a vector of Lagrange multipliers
enforcing the expectation constraint. Unfortunately, this vector has no closed form expression in terms
of estimable quantities in general, and needs to be adjusted using MCMC [WJ+08]. On the other hand,
microcanonical models have compact support. However, under mild ergodicity assumptions on the
underlying data-generating process, one can show that both models become asymptotically equivalent
via the Boltzmann equivalence principle [DZ93] as J →∞, although microcanonical models may exist
even when their macrocanonical equivalents do not [BM18, Cha17]. Also, estimating microcanonical
models does not require the costly estimation of Lagrange multipliers.

The microcanonical set of width ε associated to y is

ΩJ,ε = {x ∈ D : ‖SJ(x)− y‖ ≤ ε} .

A maximum entropy microcanonical model µmi(J, ε, y) was defined by Boltzmann as the maximum
entropy distribution supported in ΩJ,ε. If we assume the conditions that guarantee that SJ preserves
energy (Section 3.2), then one can verify that ΩJ,ε is a compact set. It follows that the maximum
entropy distribution has a uniform density pd,ε:

pd,ε(x) :=
1ΩJ,ε(x)∫
ΩJ,ε

dx
. (52)

Its entropy is therefore the logarithm of the volume of ΩJ,ε:

H(pd,ε) = −
∫
pd,ε(x) log pd,ε(x) dx = log

(∫
ΩJ,ε

dx
)
. (53)

The scale J plays an important tradeoff in this model, as illustrated in the case where y = SJ(x̄)
are measurements coming from a single realisation. When J is small, as explained in Section 3.4.2,
the number of scattering coefficients is larger than the input dimension, and thus one may expect ΩJ,ε
to converge to a single point x̄ as ε → 0. As J increases, the system of equations SJ(x) = SJ(x̄)
becomes under-constrained, and thus ΩJ,ε will be a non-singular set. Figure 8 illustrates this fact on
a collection of input images. The entropy of the microcanonical model thus grows with J . It is proved
in [BM18] that under mild assumptions the entropy is an extensive quantity, meaning that its growth
is of the same order as 2J , the support of the representation.

The appropriate scale J needs to balance two opposing effects: On the one hand, we want SJ to
satisfy a concentration property to ensure that typical samples from the unknown data distribution
µ are included in ΩJ,ε with high probability, and hence typical for the microcanonical measure µmi.
On the other hand, the sets ΩJ,ε must not be too large to avoid having elements of ΩJ,ε — and hence
typical samples of µmi— which are not typical for µ. To obtain an accurate microcanonical model,
the scale J must define microcanonical sets of minimum volume, while satisfying the concentration
(??). In particular, this implies that the only data distributions that admit a valid microcanonical
model as J increases need to be ergodic, stationary textures, where spatial averages converge to the
expectation. [BM18] developed microcanonical models built from scattering represenations, showing
their ability to model complex stationary phenomena such as Ising models, point processes or natural
textures with tractable sample complexity. We illustrate scattering microcanonical models for such
textures in Section 6.5. In essence, these models need to approximately sample from the uniform
measure of sets of the form {x; ‖S(x)− y‖ ≤ ε}. We describe next how to efficiently solve this using
gradient descent.
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6.3 Gradient Descent Scattering Reconstruction
Computing samples of a maximum entropy microcanonical model is typically done with MCMC
algorithms or Langevin Dynamics [Cre83], which is computationally expensive. Microcanonical models
computed with alternative projections and gradient descents have been implemented to sample texture
synthesis models [HB95, PS00, GEB15].

We consider microcanonical gradient descent models obtained by transporting an initial measure
towards a microcanonical set, using gradient descent with respect to the distance to the microcanincal
ensemble. Although this gradient descent sampling algorithm does not in general correspond to the
maximum entropy microcanonical model, it preserves many symmetries of the maximum entropy
microcanonical measure, and is shown to converge to the microcanonical set for appropriate choices
of energy vector [BM18].

We transport an initial measure µ0 towards a measure supported in a microcanonical set ΩJ,ε, by
iteratively minimising

E(x) =
1

2
‖SJ(x)− y‖2 (54)

with mappings of the form

ϕn(x) = x− κn∇E(x) = x− κn∂SJ(x)top(SJ(x)− y) , (55)

where κn is the gradient step at each iteration n.
Given an initial measure µ0, the measure update is

µn+1 := ϕn,#µn, (56)

with the standard pushforward measure f#(µ)[A] = µ[f−1(A)] for any µ-measurable set A, where
f−1(A) = {x; f(x) ∈ A}.

Samples from µn are thus obtained by transforming samples x0 from µ0 with the mapping ϕ̄ =
ϕn ◦ ϕn−1 · · · ◦ ϕ1. It corresponds to n steps of a gradient descent initialized with x0 ∼ µ0:

xl+1 = xl − κl∂SJ(xl)
top(SJ(xl)− y) .

[BM18] studies the convergence of the gradient descent measures µn for general choices of suf-
ficient statistics inculding scattering vectors. Even if they converge to a measure supported in a
microcanonical set ΩJ,ε, in general they do not converge to a maximum entropy measure on this set.
However, the next theorem proves that if µ0 is a Gaussian measure of i.i.d Gaussian random variables
then they have a large class of common symmetries with the maximum entropy measure. Let us
recall that a symmetry of a measure µ is a linear invertible operator L such that for any measur-
able set A, µ[L−1(A)] = µ[A]. A linear invertible operator L is a symmetry of Φd if for all x ∈ D,
SJ(L−1x) = SJ(x). It preserves volumes if its determinant satisfies |detL| = 1. It is orthogonal if
LtL = LLt = I and we say that it preserves a stationary mean if L1 = 1 for 1 = (1, ..., 1) ∈ R`.

Theorem 6.1 ([BM18], Theorem 3.4). (i) If L is a symmetry of SJ which preserves volumes then it
is a symmetry of the maximum entropy microcanonical measure.
(ii) If L is a symmetry of SJ and of µ0 then it is a symmetry of µn for any n ≥ 0.
(iii) Suppose that µ0 is a Gaussian white noise measure of d i.i.d Gaussian random variables. Then,
if L is a symmetry of Φd which is orthogonal and preserves a stationary mean then it is a symmetry
of µn for any n ≥ 0.

The initial measure µ0 is chosen so that it has many symmetries in common with Φd and hence
the gradient descent measures have many symmetries in common with a maximum entropy measure.
A Gaussian measure of i.i.d Gaussian variables of mean m0 and σ0 is a maximum entropy measure
conditioned by a stationary mean and variance. It is uniform over spheres which guarantees that it
has a large group of symmetries.

Observe that periodic shifts are linear orthogonal operators and preserve a stationary mean. The
following corollary applies property (iii) of Theorem 6.1 to prove that µn are circular-stationary.

38



Corollary 6.2 ([BM18], Corollary 3.5). When J →∞ then SJ is invariant to periodic shift. Therefore
if µ0 is a Gaussian white noise then µn is circular-stationary for n ≥ 0.

6.4 Regularising Inverse Problems with Scattering
Ill-posed inverse problems attempt to estimate an unknown signal x from noisy, possibly non-linear
and under-determined measurements y = Gx+w, where w models additive noise. A natural Bayesian
perspective is to consider the maximum-a-posteriori (MAP) estimate, given by

x̂ ∈ arg max p(x|y) = arg max p(x) · p(y|x) = arg max log p(x) + log p(y|x) .

Under a Gaussian noise assumption, − log p(y|x) takes the familiar form C‖y − Gx‖2. Regularising
inverse problems using microcanonical scattering generative models thus amounts to choosing a prior
log p(x) of the form

‖SJ(x)− z‖2 ,
where z can be adjusted using a training set.

If µ denotes the underlying data-generating distribution of signals x, such a prior implicitly assumes
that scattering coefficients SJ(x),x ∼ µ concentrate. In some applications, however, µ may not enjoy
such ergodocity properties, in which case one can also consider a microcanonical ‘amortised’ prior
that is allowed to depend on scattering coefficients of the measurements. The resulting estimator thus
becomes

x̂ ∈ arg min
x
‖Gx− y‖2 + β‖SJx−MSJy‖2 , (57)

whereM is a linear operator learnt by solving a linear regression of pairs (SJxi, SJyi)i in the scattering
domain, where {xi,yi}i is a training set of input-output pairs.

This estimator differs from typical data-driven estimators that leverage supervised training in
inverse problems using CNNs. More specifically, given a trainable model xθ = Φ(y; θ), one considers

x̂CNN = xθ∗ ,where θ∗ ∈ arg min
θ

∑
i

‖xi − Φ(yi; θ)‖2 . (58)

See [AÖ18, ZZGZ17, JMFU17] for recent surveys on data-driven models for imaging inverse problems.
Despite their phenomenal success across many inverse problems, such estimators suffer from the so-
called ‘Regression-to-the-mean’ phenomena, in which the model is asked to predict a specific input xi
from potentially many plausible signals explaining the same observations yi – leading to an estimator
that averages all such plausible solutions, thus losing high-frequency and texture information. Instead,
the scattering mircocanonical estimator (57) learns a linear operator using the scattering metric, which
leverages the stability of the scattering transform to small deformations to avoid the regression to the
mean phenomena of baseline estimators.

The estimator (57) was studied in [BSL15] using localized scattering, in the context of single-image
super-resolution, and in [DBMdH16] for other imaging inverse problems such as tomography. In all
cases, the gradient descent algorithm from Section 6.3 was employed. Figure 15 compares the resulting
estimates with spline interpolation and with estimators of the form of (58).

Generative Networks as Inverse Problems with Scattering Transforms: In [AM18b],
the authors consider a variant of the microcanonical scattering model, by replacing the gradient
descent sampling scheme of Section 6.3 with a learnt deep convolutional network generator, that
learns to map a vector of scattering coefficients z = SJ(x) back to x. Deep generative models such as
Variational Autoencoders [KW13, RMW14] or GANs [GPAM+14] consider two networks, an encoder
and a decoder. The encoder maps the data to a latent space with prescribed probability density, e.g.
a standard Gaussian distribution, and the decoder maps it back to reconstruct the input. In this
context, the scattering transform SJ may be used as an encoder on appropriate data distributions,
thanks to its ability to linearize small deformations and ‘Gaussianize’ the input distribution [AM18b].
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Figure 15: Comparison of single-image Super-Resolution using scattering microcanonical prior and
pure data-driven models, using a linear model (leading to spline interpolation) and a CNN model from
[DLHT14]. From left to right: original, linear model, CNN model, and scattering model.
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Finally, in [AM18a] the authors used the time-frequency joint scattering transform of Section 5.2
and the learnt decoder from [AM18b] for generation and transformation of musical sounds.

6.5 Texture Synthesis with Microcanonical Scattering
An image or an audio texture is usually modeled as the realization of a stationary process. A texture
model computes an approximation of this stationary process given a single realization, and texture
synthesis then consists in calculating new realizations from this stochastic model.

Since in general the original stochastic process is not known, perceptual comparisons are the only
criteria used to evaluate a texture synthesis algorithm. Microcanonical models can be considered as
texture models computed from an energy function SJ(x) which concentrate close to its mean.

[GG84] introduced macrocanonical models based on Markov random fields. They provide good
texture models as long as these textures are realizations of random processes having no long range
correlations. Several approaches have then been introduced to incorporate long range correlations.
[HB95] capture texture statistics through the marginal distributions obtained by filtering images
with oriented wavelets. This approach has been generalized by the macrocanonical Frame model of
[ZWM98], based on marginal distributions of filtered images. The filters are optimized by trying to
minimize the maximum entropy conditioned by the marginal distributions. Although the Cramer-
Wold theorem proves that enough marginal probability distributions characterize any random vector
defined over Rd the number of such marginals is typically intractable, which limits this approach.
[PS00] made important improvements to these texture models, with wavelet transforms. They capture
the correlation of the modulus of wavelet coefficients with a covariance matrix which defines an energy
vector Φd(x). Although they use a macrocanonical maximum entropy formalism, their algorithm
computes a microcanonical estimation from a single realization, with alternate projections as opposed
to a gradient descent.

Excellent texture synthesis have recently been obtained with deep convolutional neural networks.
In [GEB15], the authors consider a deep VGG convolutional network, trained on a large-scale image
classification task. The energy vector is defined as the spatial cross-correlation values of feature
maps at every layer of the VGG networks. This energy vector is calculated on a particular texture
image. Texture syntheses of very good perceptual quality are calculated with a gradient descent
microcanonical algorithm initialized on random noise. However, the dimension of this energy vector
is larger than the dimension of the input image. These estimators are therefore not statistically
consistent and have no asymptotic limit.

Figure 16 displays examples of textures from the Brodatz dataset synthesized using the scattering
microcanonical model from [BM18], and compares the effect of using only first-order scattering co-
efficients or only covariance information. Although qualitatively better than these alternatives, deep
convolutional networks reproduce image and audio textures of even better perceptual quality than
scattering coefficients [GEB15], but use over 100 times more parameters. Much smaller models pro-
viding similar perceptual quality can be constructed with wavelet phase harmonics for audio signals
[MZR18] or images [ZM19], which capture alignment of phases across scales. However, understanding
how to construct low-dimensional multiscale energy vectors to approximate random processes remains
mostly an open problem.

7 Final Remarks
This chapter aimed at providing a comprehensive overview of Scattering Representations, and specif-
ically at motivating their role in the puzzle of understanding the effectiveness of deep learning.

In the context of high-dimensional learning problems involving geometric data, beating the curse
of dimensionality requires exploiting as many geometric priors as possible. In particular, good signal
representations should be stable with respect to small metric perturbations of the domain, expressed
as deformations in the case of natural images. Scattering representations, through their constructive
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Figure 16: Examples of microcanonical texture synthesis using different vector of sufficient statis-
tics. From top to bottom: original samples, gaussian model, first-order scattering and second-order
scattering.
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approach to build such stability, reveal the role of convolutions, depth and scale that underpins the
success of CNN architectures.

We have mostly focused on the theoretical aspects of the scattering representation, and some of
its ramifications beyond the context of computer vision and learning. That said, we logically could
not cover all application areas nor some of the recent advances, especially the links with turbulence
analysis and other non-linear PDEs in physics, applications to financial time-series [LRBM19], or
video. Another important aspect that we did not address is the role of the non-linear activation
function. All our discussion has focused on the complex modulus, but recent related work [MZR18]
has considered the half-rectification case through the notion of ‘phase harmonics’, of which the modulus
can be seen as the ‘fundamental’, complemented by higher harmonics.

Despite the above points, the inherent limitation of a scattering theory to explain deep learning is
that precisely it does not consider the dynamical aspects of learning. Throughout numerous computer
vision benchmarks, one systematically finds a performance gap between hand-designed scattering ar-
chitectures and their fully trained counterparts, as soon as datasets become sufficiently large. The
ability of CNNs to interpolate high-dimensional data while seemingly avoiding the curse of dimen-
sionality remains an essential ability that scattering-based models currently lack. Hybrid approaches
such as those outlined in [OZH+18] hold the promise of combining the interpretability and robustness
of scattering models with the data-fitting power of large neural networks.

References
[AAE+18] Mathieu Andreux, Tomás Angles, Georgios Exarchakis, Roberto Leonarduzzi, Gaspar

Rochette, Louis Thiry, John Zarka, Stéphane Mallat, Eugene Belilovsky, Joan Bruna,
et al. Kymatio: Scattering transforms in python. arXiv preprint arXiv:1812.11214, 2018.

[ALM18] Joakim Andén, Vincent Lostanlen, and Stéphane Mallat. Classification with joint time-
frequency scattering.(jul 2018). arXiv preprint arXiv:1807.08869, 2018.

[AM14] Joakim Andén and Stéphane Mallat. Deep scattering spectrum. IEEE Transactions on
Signal Processing, 62(16):4114–4128, 2014.

[AM18a] Mathieu Andreux and Stéphane Mallat. Music generation and transformation with mo-
ment matching-scattering inverse networks. In ISMIR, pages 327–333, 2018.

[AM18b] Tomás Angles and Stéphane Mallat. Generative networks as inverse problems with
scattering transforms. arXiv preprint arXiv:1805.06621, 2018.

[AÖ18] Jonas Adler and Ozan Öktem. Learned primal-dual reconstruction. IEEE transactions
on medical imaging, 37(6):1322–1332, 2018.

[BBK+10] Alexander M Bronstein, Michael M Bronstein, Ron Kimmel, Mona Mahmoudi,
and Guillermo Sapiro. A gromov-hausdorff framework with diffusion geometry for
topologically-robust non-rigid shape matching. International Journal of Computer Vi-
sion, 89(2-3):266–286, 2010.

[BBL+16] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-
dergheynst. Geometric deep learning: going beyond euclidean data. arXiv preprint
arXiv:1611.08097, 2016.

[BM13] J. Bruna and S. Mallat. Invariant scattering convolution networks. Trans. PAMI,
35(8):1872–1886, 2013.

[BM17] Alberto Bietti and Julien Mairal. Group invariance, stability to deformations, and com-
plexity of deep convolutional representations. arXiv preprint arXiv:1706.03078, 2017.

43



[BM18] Joan Bruna and Stéphane Mallat. Multiscale sparse microcanonical models. arXiv
preprint arXiv:1801.02013, 2018.

[BM19] Alberto Bietti and Julien Mairal. On the inductive bias of neural tangent kernels. arXiv
preprint arXiv:1905.12173, 2019.

[BMB+15] Joan Bruna, Stéphane Mallat, Emmanuel Bacry, Jean-François Muzy, et al. Intermittent
process analysis with scattering moments. The Annals of Statistics, 43(1):323–351, 2015.

[Bru13] Joan Bruna. Scattering representations for recognition. PhD thesis, Ecole Polytechnique
X, 2013.

[Bru19] Joan Bruna. Consistency of haar scattering. arXiv preprint, 2019.

[BSL15] Joan Bruna, Pablo Sprechmann, and Yann LeCun. Super-resolution with deep convolu-
tional sufficient statistics. arXiv preprint arXiv:1511.05666, 2015.

[BZSL13] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and
locally connected networks on graphs. Proc. ICLR, 2013.

[CCM14] Xu Chen, Xiuyuan Cheng, and Stéphane Mallat. Unsupervised deep haar scattering on
graphs. In Advances in Neural Information Processing Systems, pages 1709–1717, 2014.

[CCM16] Xiuyuan Cheng, Xu Chen, and Stéphane Mallat. Deep Haar scattering networks. Infor-
mation and Inference, 5:105–133, 2016.

[CG97] Fan RK Chung and Fan Chung Graham. Spectral graph theory. Number 92. American
Mathematical Soc., 1997.

[Cha17] Sourav Chatterjee. A note about the uniform distribution on the intersection of a simplex
and a sphere. Journal of Topology and Analysis, 9(04):717–738, 2017.

[CL06] Ronald R Coifman and Stéphane Lafon. Diffusion maps. Applied and computational
harmonic analysis, 21(1):5–30, 2006.

[CL17] Wojciech Czaja and Weilin Li. Analysis of time-frequency scattering transforms. Applied
and Computational Harmonic Analysis, 2017.

[Cre83] Michael Creutz. Microcanonical monte carlo simulation. Physical Review Letters,
50(19):1411, 1983.

[CW16a] Taco Cohen and Max Welling. Group equivariant convolutional networks. In Interna-
tional conference on machine learning, pages 2990–2999, 2016.

[CW16b] Taco S Cohen and Max Welling. Steerable cnns. arXiv preprint arXiv:1612.08498, 2016.

[DBMdH16] Ivan Dokmanić, Joan Bruna, Stéphane Mallat, and Maarten de Hoop. Inverse problems
with invariant multiscale statistics. arXiv preprint arXiv:1609.05502, 2016.

[DLHT14] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep convo-
lutional network for image super-resolution. In European conference on computer vision,
pages 184–199. Springer, 2014.

[DZ93] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. Johns and
Bartett Publishers, Boston, 1993.

44



[EEHM17] Michael Eickenberg, Georgios Exarchakis, Matthew Hirn, and Stéphane Mallat. Solid
harmonic wavelet scattering: Predicting quantum molecular energy from invariant de-
scriptors of 3d electronic densities. In Advances in Neural Information Processing Sys-
tems, pages 6540–6549, 2017.

[FFFP04] L. Fei-Fei, R. Fergus, and P. Perona. Learning Generative Visual models from few
training examples: an incremental Bayesian approach tested on 101 object categories.
IEEE CVPR, 2004.

[FGMR10] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan. Object
detection with discriminatively trained part-based models. Trans. PAMI, 32(9):1627–
1645, 2010.

[GBR19] Fernando Gama, Joan Bruna, and Alejandro Ribeiro. Stability of graph scattering trans-
forms. arXiv preprint arXiv:1906.04784, 2019.

[GDDM14] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies
for accurate object detection and semantic segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 580–587, 2014.

[GEB15] Leon Gatys, Alexander S Ecker, and Matthias Bethge. Texture synthesis using convo-
lutional neural networks. In Advances in Neural Information Processing Systems, pages
262–270, 2015.

[GG84] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images. IEEE Transactions on pattern analysis and machine
intelligence, pages 721–741, 1984.

[GNC10] Matan Gavish, Boaz Nadler, and Ronald R Coifman. Multiscale wavelets on trees,
graphs and high dimensional data: Theory and applications to semi supervised learning.
In Proc. ICML, 2010.

[GPAM+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sher-
jil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances
in Neural Information Processing Systems, pages 2672–2680, 2014.

[GRB18] Fernando Gama, Alejandro Ribeiro, and Joan Bruna. Diffusion scattering transforms on
graphs. arXiv preprint arXiv:1806.08829, 2018.

[GWH19] Feng Gao, Guy Wolf, and Matthew Hirn. Geometric scattering for graph data analysis.
In International Conference on Machine Learning, pages 2122–2131, 2019.

[HB95] David J Heeger and James R Bergen. Pyramid-based texture analysis/synthesis. In Pro-
ceedings of the 22nd annual conference on Computer graphics and interactive techniques,
pages 229–238. ACM, 1995.

[HMP17] Matthew Hirn, Stéphane Mallat, and Nicolas Poilvert. Wavelet scattering regression of
quantum chemical energies. Multiscale Modeling & Simulation, 15(2):827–863, 2017.

[JGH18] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence
and generalization in neural networks. In Advances in neural information processing
systems, pages 8571–8580, 2018.

[JMFU17] Kyong Hwan Jin, Michael T McCann, Emmanuel Froustey, and Michael Unser. Deep
convolutional neural network for inverse problems in imaging. IEEE Transactions on
Image Processing, 26(9):4509–4522, 2017.

45



[JvGLS16] Jorn-Henrik Jacobsen, Jan van Gemert, Zhongyu Lou, and Arnold WM Smeulders.
Structured receptive fields in cnns. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 2610–2619, 2016.

[JZL96] Anil K. Jain, Yu Zhong, and Sridhar Lakshmanan. Object matching using deformable
templates. IEEE Transactions on pattern analysis and machine intelligence, 18(3):267–
278, 1996.

[KBPZ17] Ilya Kostrikov, Joan Bruna, Daniele Panozzo, and Denis Zorin. Surface networks. arXiv
preprint arXiv:1705.10819, 2017.

[KDGH07] D. Keysers, T. Deselaers, C. Gollan, and N. Hey. Deformation Models for Image Recog-
nition. IEEE trans of PAMI, 2007.

[KT18] Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and
convolution in neural networks to the action of compact groups. arXiv preprint
arXiv:1802.03690, 2018.

[KW13] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[LRBM19] Roberto Leonarduzzi, Gaspar Rochette, Jean-Phillipe Bouchaud, and Stéphane Mallat.
Maximum-entropy scattering models for financial time series. In ICASSP 2019-2019
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 5496–5500. IEEE, 2019.

[Mal99] Stéphane Mallat. A wavelet tour of signal processing. Academic Press, 1999.

[Mal08] S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, New York, 2008.

[Mal12] S. Mallat. Group Invariant Scattering. Communications in Pure and Applied Mathemat-
ics (to appear), 2012.

[Mal16] Stéphane Mallat. Understanding deep convolutional networks. Phil. Trans. R. Soc. A,
374(2065), 2016.

[MKHS14] Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and Cordelia Schmid. Convolutional kernel
networks. In Advances in neural information processing systems, pages 2627–2635, 2014.

[MNY06] H. Minh, P. Niyogi, and Y. Yao. Mercer’s Theorem, Feature Maps and Smoothing. Proc.
of Computational Learning Theory, 2006.

[MZR18] Stéphane Mallat, Sixin Zhang, and Gaspar Rochette. Phase harmonics and correlation
invariants in convolutional neural networks. arXiv preprint arXiv:1810.12136, 2018.

[NLCK06] Boaz Nadler, Stéphane Lafon, Ronald R Coifman, and Ioannis G Kevrekidis. Diffusion
maps, spectral clustering and reaction coordinates of dynamical systems. Applied and
Computational Harmonic Analysis, 21(1):113–127, 2006.

[OBZ17] Edouard Oyallon, Eugene Belilovsky, and Sergey Zagoruyko. Scaling the scattering
transform: Deep hybrid networks. arXiv preprint arXiv:1703.08961, 2017.

[OBZV18] Edouard Oyallon, Eugene Belilovsky, Sergey Zagoruyko, and Michal Valko. Compress-
ing the input for cnns with the first-order scattering transform. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 301–316, 2018.

46



[OM15] Edouard Oyallon and Stéphane Mallat. Deep roto-translation scattering for object clas-
sification. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2865–2873, 2015.

[OZH+18] Edouard Oyallon, Sergey Zagoruyko, Gabriel Huang, Nikos Komodakis, Simon Lacoste-
Julien, Matthew B Blaschko, and Eugene Belilovsky. Scattering networks for hybrid
representation learning. IEEE transactions on pattern analysis and machine intelligence,
2018.

[PS00] Javier Portilla and Eero P Simoncelli. A parametric texture model based on joint statis-
tics of complex wavelet coefficients. International journal of computer vision, 40(1):49–
70, 2000.

[PT02] G. Oppenheim P.Doukhan and M. Taqqu. Theory and Applications of Long-Range De-
pendence. Birkhauser, Boston, 2002.

[PWH18] Michael Perlmutter, Guy Wolf, and Matthew Hirn. Geometric scattering on manifolds.
arXiv preprint arXiv:1812.06968, 2018.

[RG13] Raif Rustamov and Leonidas J Guibas. Wavelets on graphs via deep learning. In Proc.
NIPS, 2013.

[RMW14] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic back-
propagation and variational inference in deep latent gaussian models. arXiv preprint
arXiv:1401.4082, 2014.

[SM13] L. Sifre and S. Mallat. Rotation, scaling and deformation invariant scattering for texture
discrimination. In Proc. CVPR, 2013.

[Soa09] S. Soatto. Actionable Information in Vision. ICCV, 2009.

[STC04] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, 2004.

[SZS+13] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013.

[Wal12] I. Waldspurger. Recovering the phase of a complex wavelet transform, 2012.

[Wal17] Irène Waldspurger. Exponential decay of scattering coefficients. In 2017 international
conference on sampling theory and applications (SampTA), pages 143–146. IEEE, 2017.

[WB17] Thomas Wiatowski and Helmut Bölcskei. A mathematical theory of deep convolutional
neural networks for feature extraction. IEEE Transactions on Information Theory,
64(3):1845–1866, 2017.

[WGB17] Thomas Wiatowski, Philipp Grohs, and Helmut Bölcskei. Energy propagation in deep
convolutional neural networks. IEEE Transactions on Information Theory, 64(7):4819–
4842, 2017.

[WJ+08] Martin J Wainwright, Michael I Jordan, et al. Graphical models, exponential families,
and variational inference. Foundations and Trends R© in Machine Learning, 1(1–2):1–305,
2008.

[YSO+11] K. Yoshimatsu, K. Schneider, N. Okamoto, Y. Kawahura, and M. Farge. Intermittency
and geometrical statistics of three-dimensional homogeneous magnetohydrodynamic tur-
bulence : A wavelet viewpoint. Phys. Plasmas, 2011.

47



[ZL18] D. Zou and G. Lerman. Graph convolutional neural networks via scattering.
arXiv:1804.00099v1 [cs.IT], 31 March 2018.

[ZM19] Sixin Zhang and Stephane Mallat. Wavelet phase harmonic covariance models of sta-
tionary processes. arXiv preprint, 2019.

[ZWM98] Song Chun Zhu, Yingnian Wu, and David Mumford. Filters, random fields and maximum
entropy (frame): Towards a unified theory for texture modeling. International Journal
of Computer Vision, 27(2):107–126, 1998.

[ZZGZ17] Kai Zhang, Wangmeng Zuo, Shuhang Gu, and Lei Zhang. Learning deep cnn denoiser
prior for image restoration. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3929–3938, 2017.

A Proofs

A.1 Proof of Proposition 3.10

A.2 Proof of Theorem ??
Fix p ∈ P∞, and let q ∈ CJ(p)∩P∞ be a path in the neighborhood of p. We can thus write q = p+ q̃,
with q̃ = λ̃+ q̌ ∈ P∞ satisfying |λ̃|−1 ≤ 2−J . We have

Sx(q) =

∫
U [q]x(u)du∫
U [q]δ(u)du

=

∫
U [q̃]U [p]x(u)du∫
U [q̃]U [p]δ(u)du

=

∫
U [q̃]U [p]x(u)du∫
U [q̃]δ(u)du

·
∫
U [q̃]δ(u)du∫

U [q̃]U [p]δ(u)du

= S(U [p]x)(q̃) ·
(
S(U [p]δ)(q̃)

)−1
. (59)

The following lemma proves that if x is in L1(Rd) and is positive, then Sx has a particularly simple
form on “small" paths q̃ ∈ P∞ with finite order and finite excursion:

Lemma A.1. Let m, B ∈ N, and let

AJ,m = {q ∈ P∞ ; q = (λ1, . . . , λm), |q| = m, |λ1| = 2J , ∆(q) ≤M} . (60)

If x ∈ L1(Rd), x ≥ 0, then

lim
J→∞

sup
q∈AJ,m

∣∣∣∣Sx(q)−
∫
x(u)du

∣∣∣∣ = 0 . (61)

If we apply Lemma A.1 to f1 = U [p]x and f2 = U [p]δ, then the identity (59) implies that for any
ε > 0 there exists J > 0 such that

∀q s.t. q ∈ CJ(p), |q| ≤ m, ∆(q) ≤ B ,

∣∣∣∣Sx(q)−
∫
U [p]x(u)du∫
U [p]δ(u)du

∣∣∣∣ ≤ ε ,
which implies (??) since Sx(p) = (

∫
U [p]δ(u)du)−1

∫
U [p]f(u)du.

We shall then prove (61). Fix J > 0, and let q ∈ AJ,m. By definition (60), we can write q = r2J+q̃,
and without loss of generality, we can assume that r = 1. let Djx(u) = 2−jdx(2−ju) be a dilation
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operator normalized in L1(Rd). A change of variables shows that

Djx ? ψλ(u) = 2−jd
∫
x(2−jv)ψλ(u− v)dv

=

∫
x(v)ψλ(u− 2jv)dv =

∫
x(v)ψλ(2j(2−ju− v))dv

= 22−jd
∫
x(v)ψ2−jλ(2−ju− v)dv

= Dj(x ? ψ2−jλ)(u) , (62)

and by cascading this property we obtain that

U [p]Djx = DjU [2−jp]x ,

or equivalently U [p]x = DjU [2−jp]D−jx. By setting j = J , we obtain

Sx(2J + q̃) = SD−Jx(1 + q̃2−J) =

∫
U [1 + q̃2−J ]D−Jx(u)du∫
U [1 + q̃2−J ]δ(u)du

, (63)

since Djδ = δ ∀j with the L1(Rd) normalization. Now, if x =
∫
x(u)du, (63) can be decomposed as

Sx(2J + q̃) =

=

∫
xU [1 + q̃2−J ]δ(u)du∫
U [1 + q̃2−J ]δ(u)du

+

∫ (
U [1 + q̃2−J ]D−Jx(u)− xU [1 + q̃2−J ]δ(u)

)
du∫

U [1 + q̃2−J ]δ(u)du

= x+

∫ (
U [1 + q̃2−J ]D−Jx(u)− U [1 + q̃2−J ]xδ(u)

)
du∫

U [1 + q̃2−J ]δ(u)du
, (64)

The path 2−Jq = 1 + q̃2−J is obtained by a translation in scale of q, and hence it satisfies |2−Jq| = |q|
and ∆(2−Jq) = ∆(q). We will prove (61) by showing that

inf
q∈A1,m

∫
U [q]δ(u)du > 0 , (65)

and
lim
J→∞

sup
q∈A1,m

∣∣∣∣∫ (U [q]D−Jx(u)− U [q]aδ(u)) du

∣∣∣∣ = 0 . (66)

Let us first prove (65), by induction on the maximum path order m.
Let m = 2. In that case, the set A1,2 contains paths q = (1, λ), where the scale of λ is lower

bounded by |λ|−1 ≤M . We need to see that

inf
|λ|−1≤M

∫
||ψ| ? ψλ|(u)du = ‖|ψ| ? ψλ‖1 > 0 .

From (62) we deduce that if j = |λ|, then

‖|ψ| ? ψλ‖1 = ‖Dj(D−j |ψ| ? ψ)‖1 = ‖D−j |ψ| ? ψ‖1 .

Since |ψ| ∈ L1(Rd) and |ψ| ≥ 0, it follows that D−j |ψ| is an approximation of the identity in L1(Rd)
as j →∞, with

∀j ,
∫
D−j |ψ|(u)du = ‖ψ‖1 ,

and hence
lim
j→∞

‖D−j |ψ| ? ψ − ‖ψ‖1ψ‖1 = 0 . (67)
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But ∣∣∣∣∫ ||ψ| ? ψλ|(u)du− ‖ψ‖1
∫
|ψ|(u)du

∣∣∣∣ =

∣∣∣∣∫ |D−j |ψ| ? ψ|(u)du− ‖ψ‖1
∫
|ψ|(u)du

∣∣∣∣
≤

∫
||D−j |ψ| ? ψ|(u)− ‖ψ‖1|ψ|(u)| du

≤ ‖D−j |ψ| ? ψ − ‖ψ‖1ψ‖1 .

As a result, ∀ε > 0 there exists J such that if |λ| > J , then∣∣∣∣∫ ||ψ| ? ψλ|(u)du− ‖ψ‖21
∣∣∣∣ ≤ ε .

If ε is chosen such that ε < ‖ψ‖21/2, and Jε is the corresponding J , then the paths q ∈ A1,2, q = (1, λ)
with |λ| > Jε satisfy

∀q ∈ A , q = (1, λ) , |λ| > Jε ,

∫
U [q]δ(u)du > ‖ψ‖21 − ε =

‖ψ‖21
2

> 0 . (68)

On the other hand, there are only a finite number of paths q ∈ A1,2 with |λ| ≤ Jε, since by definition
|λ| ≥M−1. As a result,

inf
q∈A

q=(1,λ),|λ|≤Jε

∫
U [q]δ(u)du = α0 > 0 . (69)

By combining (68) and (69) we obtain that

inf
q∈A

∫
U [q]δ(u)du ≥ min(α0,

‖ψ‖21
2

) = α > 0 . (70)

Let us now suppose the result true for m = m0−1. We shall prove that it is also true for m = m0.
Let

inf
q∈A1,m0−1

∫
U [q]δ(u)du = α > 0 .

For each l > 0, we shall decompose the set A1,m0
in terms of the maximum jump of the path:

A1,m0 = Bl ∪ (A1,m0 \ Bl) ,

with
Bl =

{
q ∈ A1,m0 , q = (λ1, . . . , λm0); χ(q) = max

k

( |λk|∑
k′<k |λk′ |

)
≥ 2l

}
.

The maximum jump χ(q) of a path thus measures the largest decrease on the scale, with respect to
the current cumulated support of U [λ1, . . . , λk]. Since the set A1,m contains paths of finite order and
finite slope, the maximum jump is lower bounded by a constant M0 depending on M and the order
m0.

Let q ∈ Bl. We can write q = q0 + λ+ q1, where q0 = (λ′1, . . . , λ
′
k′) satisfies

|λ| ≥ (
∑
i≤k′
|λ′i|)2l . (71)

If λ = 2jr, we have

U [q0 + λ]δ = U [λ]U [q0]δ = |U [q0]δ ? ψλ|
= Dj(D−jU [q0]δ ? ψ20r) (72)
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We will now exploit again the fact that fj(u) = D−jU [q0]δ(u) is an approximation of the identity in
L1(Rd). Let γ =

∫
fj(u)du, which does not depend upon j. We have

‖Dj(D−jU [q0]δ ? ψ20r)− γDjψ20r‖1 = ‖(fj ? ψ20r)− γψ20r‖1

=

∫ ∣∣∣∣∫ (ψ20r(u− t)− ψ20r(u))fj(t)dt

∣∣∣∣ du
≤

∫
‖Ttψ20r − ψ20r‖1fj(t)dt , (73)

where Tth(u) = h(u − t) is the translation operator. Since the translation operator t 7→ Tth is
continuous in L1(Rd) for any h ∈ L1(Rd), then for each ε > 0, we can find η > 0 which only depends
upon ψ such that

∀|t| < η , ‖Ttψ20r − ψ20r‖1 < ε/2 . (74)

On the other hand,∫
|t|>η

‖Ttψ20r − ψ20r‖1fj(t)dt ≤ 2‖ψ‖1
∫
|t|>η

fj(t)dt

= 2‖ψ‖1
∫
|t|>η

D−jU [q0]δ(t)dt

= 2‖ψ‖1
∫
|t|>2jη

U [q0]δ(t)dt . (75)

By construction, the scale 2j is such that

2j ≥ (
∑
i≤k′
|λ′i|) · 2l ,

from (71). Since the wavelet ψ has fast decay, U [q0]δ(t) satisfies

|U [q0]δ(t)| ≤ C1/(C2 + (|t|/K))n ,

where Ci and n only depend upon ψ and K =
∑
i≤k′ |λ′i| is proportional to the effective support of

the cascade of convolutions given by U [q0]h = |||h ? ψλ′1 | ? . . . | ? ψλ′k′ |. As a result, the error in (75)
can be bounded by ∫

|t|>η
‖Ttψ20r − ψ20r‖1fj(t)dt ≤ C‖ψ‖1ε(l)

∫
U [q0]δ(t)dt

≤ C‖ψ‖1γε(l) , (76)

where ε(l)→ 0 as l→∞. By using (74) and (76) we can now bound (73) with

‖(fj ? ψ20r)− γψ20r‖1 ≤
∫
‖Ttψ20r − ψ20r‖1fj(t)dt

=

∫
|t|<η

‖Ttψ20r − ψ20r‖1fj(t)dt+

∫
|t|>η

‖Ttψ20r − ψ20r‖1fj(t)dt

≤ ε/2γ + C‖ψ‖1γε(l)
≤ ‖ψ‖|q0|1 (ε/2 + C‖ψ‖1ε(l)) , (77)

since γ =
∫
U [q0]δ(u)du ≤ ‖ψ‖m0

1 using the Young inequality ‖f ? g‖1 ≤ ‖f‖1‖g‖1.
Since

‖U [λ]f − U [λ]g‖1 = ‖|f ? ψλ| − |g ? ψλ|‖1
≤ ‖f ? ψλ − g ? ψλ‖1 = ‖(f − g) ? ψλ‖1
≤ ‖f − g‖1‖ψ‖1 ,
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it follows that
‖U [p]f − U [p]g‖1 ≤ ‖f − g‖1‖ψ‖|p|1 . (78)

As a result of (77), any path q ∈ Bl, which was decomposed as q = q0 + λ+ q1, satisfies∣∣∣∣∫ U [q]δ(u)du− γ
∫
U [λ+ q1]δ(u)du

∣∣∣∣ ≤
‖U [q]δ − γU [q1]U [λ]δ‖1 = ‖U [q1]U [λ]U [q0]δ − γU [q1]U [λ]δ‖1

≤ ‖ψ‖|q1|1 ‖U [q0]δ ? ψλ − γψλ‖1
≤ ‖ψ‖m0

1 (ε/2 + C‖ψ‖1ε(l)) , (79)

by applying (78) on U [q1]. (79) implies that for any ε > 0 one can find sufficiently large l such that∫
U [q]δ(u)du is at distance at most ε from γ

∫
U [q̃]δ(u)du, where |q̃| < |q| and α ≤ γ ≤ ‖ψ‖m0

1 . By
applying the induction hypothesis with ε = α/2, we conclude that

∀q ∈ Bl ,

∫
U [q]δ(u)du ≥ α2/2 > 0 . (80)

On the other hand, the set A1,m0
\ Bl contains only a finite number of paths, since their slope is

bounded by ∆(q) ≤ B, and thus

min
q∈A1,m0

\Bl

∫
U [q]δ(u)du = α0 > 0 .

We conclude that
∀q ∈ A1,m0 ,

∫
U [q]δ(u)du ≥ min(α2/2, α0) > 0 , (81)

which proves (65).
Let us finally prove (66). Since x ∈ L1(Rd) and x ≥ 0, D−Jx is also an approximation of the

identity, which, with x =
∫
x(u)du, satisfies

∀h ∈ L1(Rd) , lim
J→∞

‖D−Jx ? h− xh‖1 = 0 . (82)

If q ∈ A, q = λ1 + q̃ with λ1 = 20r, and hence U [q]D−Jx = U [q̃]|D−Jx ? ψλ1 |. Then, by using again
(78), it results that∣∣∣∣∫ U [q]D−Jx(u)du− x

∫
U [q]δ(u)du

∣∣∣∣ =

∣∣∣∣∫ (U [q]D−Jx(u)− xU [q]δ(u))du

∣∣∣∣
≤

∫
|U [q]D−Jx(u)− xU [q]δ(u)| du

= ‖U [q]D−Jx− xU [q]δ‖1
= ‖U [q̃]|D−Jx ? ψλ1 | − xU [q̃]|ψλ1 |‖1
≤ ‖ψ‖|q̃|1 ‖|D−Jx ? ψλ1

| − x|ψλ1 |‖1
≤ ‖ψ‖|q̃|1 ‖D−Jx ? ψλ1

− xψλ1
‖1 , (83)

which can be made arbitrarily small thanks to (82). This proves (66), which concludes the proof of
Lemma A.1, and hence of (??) �.
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A.3 Proof of Proposition ??
Let (Vk)k∈Z be a multiresolution analysis generated by a scaling function ϕ ∈ L2(Rd) ∩ L1(Rd), and
fix j ∈ Z. Let us first prove the result for xj = PVj

x. xj can be written using the orthonormal basis
{ϕj(u− k2j)}k∈Z, with ϕj(u) = 2−jd/2ϕ(2−ju):

xj(u) =
∑
k

ckϕj(u− 2jk) ,

with ck = 〈x(u), ϕj(u− 2jk)〉. But

Qxj(u) =
∑
k

ckQϕj(u− 2jk) = Qϕj(u)
∑
k

ck , (84)

thanks to the fact that Q is linear and Qϕj(u− 2jk) = QT2jkϕj = Qϕj . Moreover,∫
xj(u)du =

∫ ∑
k

ckϕj(u− 2jk)du

=
∑
k

ck

(∫
ϕj(u− 2jk)du

)
=

(∑
k

ck

)∫
ϕj(u)du ,

which implies, by substituting in (84), that

Qxj = Q(ϕj)

(∫
ϕj(u)du

)−1(∫
xj(u)du

)
= C

(∫
xj(u)du

)
,

where C only depends upon the scaling function and the resolution. We finally extend the result to
L2(Rd) ∩ L1(Rd) with a density argument. Given x ∈ L2(Rd) ∩ L1(Rd) and ε > 0, there exists a
resolution j such that ‖x− PVjx‖ ≤ ε. Let xj = PVjx. Since

∫
x(u)du =

∫
xj(u)du, it follows that

‖Qx−Qxj‖ = ‖Qx− C
∫
x(u)du‖

= ‖Q(x− xj)‖ ≤ ‖Q‖‖x− xj‖ ≤ ‖Q‖ε ,

which concludes the proof since Q is a bounded operator �.

A.4 Proof of Theorem ??
Proof: Let 1Ω be the indicator of a compact ball Ω ⊂ Rd. Let us first show that M1Ω = ρ1Ω. Let
φ ∈ Diff(Rd) be a diffeomorphism of Rd. For f ∈ L2(Rd), we denote Lφf = f ◦φ. Given f ∈ L2(Rd),
let

G(f) = {φ ∈ Diff(Rd) , Lφf = f}
denote the isotropy group of f , ie the subgroup of diffeomorphisms leaving f unchanged up to a set
of zero measure. If φ ∈ G(f), then

‖Mf − LφMf‖ = ‖Mf −MLφf‖ ≤ ‖f − Lφf‖ = 0 ,

which means that φ ∈ G(M(f)) too.
If f = c1Ω, then its isotropy group contains any diffeomorphism φ satisfying

φ(Ω) = Ω , φ(Ω) = Ω ,

where Ω = Rd−Ω. Thus, Mf is also invariant to the action of any φ satisfying the above conditions.
It results that Mf must also be constant within both Ω and Ω up to a set of zero measure. Indeed,
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otherwise we could find two subsets I1, I2 ⊂ Ω of strictly positive measure µ(I1) = µ(I2) > 0, such
that ∫

I1

Mf(x)dµ(x) 6=
∫
I2

Mf(x)dµ(x) ,

but then a diffeomorphism φ such that φ ∈ G(1Ω) and mapping I1 to I2, does not satisfy ‖Mf −
LφMf‖2 = 0, which is a contradiction.

Since Mf belongs to L2(Rd) and Ω has infinite measure, it results that Mf(x) = 0 ∀x ∈ Ω, and
hence

M(c1Ω) = ρ(c,Ω)1Ω ,

with ρ(c,Ω) = (Mc1Ω)(x0) for any x0 ∈ Ω. Since the hypercube Ω can be obtained from the unit ball
Ω0 of Rd with a similarity transform TΩ , Ω = TΩΩ0, we have M(c1Ω) = M(TΩc1Ω0

) = TΩM(c1Ω0
),

which shows that ρ(c,Ω) does not depend upon Ω, and we shall write it ρ(c).
Let us now consider f ∈ C∞ with compact support Ω. Fix a point x0 ∈ Ω. We consider a sequence

of diffeomorphisms (φn)n∈N which progressively warp f towards f(x0)1Ω:

lim
n→∞

‖Lφnf − f(x0)1Ω‖ = 0 , (85)

For that purpose, we construct φn such that φn(x) = x for x ∈ Ω for all n, and such that it maps
a neighborhood of radius 2−n of x0 to the set Ωn ⊂ Ω defined as

Ωn = {x ∈ Ω , dist(x,Ω) ≥ 2−n} .

Thanks to the fact that the domain Ω is regular, such diffeormorphisms can be constructed for instance
by expanding the rays departing from x0 at the neighborhood of x0 and contracting them as they
approach the border ∂Ω. Since f is C∞ and it is compactly supported, it is bounded, and hence

‖Lφn(Mf)−M(f(x0)1Ω)‖ = ‖M(Lφnf)−M(f(x0)1Ω)‖
≤ ‖Lφnf − f(x0)1Ω‖ ,

and it results from (85) that limn→∞ Lφn(Mf) = M(f(x0)1Ω) in L2(Rd). Since the diffeomorphisms
φn expand the neighborhood of x0 and M(f(x0)1Ω) = ρ(f(x0))1Ω , then necessarily Mf(x0) =
M(f(x0)1Ω)(x0), and hence Mf(x0) = ρ(f(x0)), which only depends upon the value of f at x0.

Since C∞, compact support functions are dense in L2(Rd) and M is Lipschitz continuous, for any
f ∈ L2(Rd) and ε > 0 we can find f0 ∈ C∞ such that

‖Mf −Mf0‖ = ‖f − f0‖ < ε ,

and hence Mf can be approximated by a pointwise operator with arbitrary precision, and as a result
Mf(x) = ρ(f(x)) almost everywhere for all f ∈ L2(Rd). �

B Proof of Theorem 4.4

B.1 Orthogonal Haar Scattering Consistency
We start by considering the case of discrete stationary processes with white autocorrelation and
progressive Haar Scattering.

Let X be a random variable. We define the progressive Haar Scattering of X recursively as follows.

X0
d
=X ,

Xj+1,2k
d
=
Y + Z

2
, Xj+1,2k+1

d
=
|Y − Z|

2
, where Y, Z d

=Xj,k independent. (86)

We shall prove the following:
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Theorem B.1. If X is a random variable with finite energy e|X|2, then the progressive Haar scattering
representation satisfies

lim
J→∞

2J∑
k=0

var [XJ,k] = 0 . (87)

Proof: Let us suppose first that X is bounded, i.e P (X > 2M ) = 0 for some constant M . Without
loss of generality we can assume that X is also positive.

We will base the proof of (87) on the Effron-Stein Inequality:

Lemma B.2. Let Ω be a set and let g : Ωn → R be a measurable function of n variables. Let
Z = g(X1, . . . , Xn) where the Xi are independent. Let X ′1, . . . , X ′n be an independent copy of the Xi

and denote Z ′i = g(X1, . . . , X
′
i, Xi+1, . . . , Xn). Then

var [Z] ≤ 1

2

∑
i

e(Z − Z ′i)2 . (88)

In particular, if a function g : Ωn → R is uniformly bounded, in the sense that there exist constants
c1, . . . , cn such that

sup
x1,...,xn,x′i∈Ω

|g(x1, . . . , xn)− g(x1, . . . , x
′
i, xi+1, . . . , xn)| ≤ ci ,

then it results from (88) that

var [Z] ≤ 1

2

n∑
i=1

c2i . (89)

By construction, each of the random variables XJ,k is a function of 2J independent copies of X,
via the nonlinear map

gJ,k(x1, . . . , x2J ) =
1

2J
(. . . || . . . xk ± xk+1| ± . . . |xl ± xkl+1| . . . | . . . ) ,

with the particular choice of absolute values determined by the binary decomposition of k. Let us
write the path p(k) = (i1, . . . , iJ) using such binary decomposition. This suggests using the Effron-
Stein inequality directly on the functions gJ,k, but the uniform bound is not effective in this case,
since we obtain ci = M

2J
in that case, and therefore we do not exploit the contractive aspect of the

nonlinearity in (86).
However, we can choose how to decompose each variable XJ,k as a function of some of its ancestor

variables in the recurrence tree. For that purpose, we represent each node of the recurrence tree of
(86) as a path defined on the integer lattice

Λ = {(j,m) ; j,m ∈ Z, 0 ≤ m ≤ j ≤ J} .
A node (j,m) intersects all scattering paths that at level j have gone through exactly m modulus

nonlinearities, that is
p(k) intersects (j,m)⇐⇒

∑
j′≤j

ij′ = m .

By observing that

x1, x2 ∈
[
0, 2M

]
⇒ |x1 − x2|

2
∈
[
0,

2M

2

]
,

it results that a node (j,m) offers the possibility to represent any path that intersects it using 2J−j

independent variables taking values in [0, 2M−m]. Applying (89) from node (j,m) produces constants
ci = 2M−m+j−J and therefore a bound

2J−j∑
i=1

22(M−J)+2(j−m) = 22M−J2j−2m .
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Thus, for each of the variables XJ,k at the bottom layer J , we can select the best bound from all the
ancestor nodes intersecting the corresponding path p(k). The lines {(j,m) ∈ Λ, j−2m = δ} determine
the regions where each bound is successively improved by 2δ. The total variance

∑2J

k=0 var [XJ,k] thus
converges to

22M2J2−J exp 2−max r(k) ,

where r is a random walk with no drift of J steps in the lattice ΛJ and the expectation is taken over
the uniform distribution of random walks. Since the random walk has nonzero escape probability
(since, for large J , the fluctuations of typical k are of the order of

√
J/2 by simple application of the

Central Limit Theorem), we conclude that

lim
J→∞

exp 2−max r(k) = 0 .

Finally, we extend the result for random variable X not necessarily bounded. Consider a sequence
Xn → X of random variables defined as Xn = X · 1(X < cn), where cn → ∞ It follows that
exp |Xn −X|2 → 0 as n→∞. We have

var [XJ,k] ≤ 2var [(Xn)J,k] + 2 exp |XJ,k − (Xn)J,k|2 ,

and
2J∑
k=0

exp |XJ,k − YJ,k|2 ≤ exp |X − Y |2

by induction over J and thanks to the non-expansive property of (86). Hence

2J∑
k=0

var [XJ,k] ≤ 2

2J∑
k=0

var
[
(Xn)J,k

]
+2

2J∑
k=0

exp |XJ,k − (Xn)J,k|2 ≤ 2

2J∑
k=0

var [(Xn)J,k]+2 exp |X −Xn|2

and both terms converge to 0 as J and n go to ∞ This concludes the proof. �

B.2 Extension to non-Orthogonal Haar
Another interpretation of the previous theorem is in terms of a white discrete process Y [n], i.e. such
that Y [1], . . . , Y [n], .. are iid. We now extend the previous proof to handle the case where either Y [n]
is a process not necessarily white, or the scattering is performed with oversampling.

The extension is based in the following simple modification of the Effron-Stein lemma.

Lemma B.3. Suppose that X1, . . . , Xn defined in Ω are random variables with the property that there
exists ∆ > 0 such that Xi is independent of Xj for all |j − i| > ∆. Let Z = g(X1, . . . , Xn) with g
measurable, and we assume that there exist constants c1, . . . , cn such that

sup
x1,...,xn,x′i∈Ω

|g(x1, . . . , xn)− g(x1, . . . , x
′
i, xi+1, . . . , xn)| ≤ ci ,

Then

var [Z] ≤ ∆

2

n∑
i

c2i . (90)

In other words, the lemma is still valid if we replace the original n degrees of freedom by their
effective number of degrees of freedom n

∆ .
Proof: We use the same martingale argument as in [Lugosi, Bousquet, p??] and we use the same

notation for convenience. We verify that the same definition of martinagles Vi also satisfies eViVj = 0
in our setting.
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The only difference comes when bounding ∑
i

eV 2
i

We verify that eV 2
i ≤ ∆c2i by realizing that the probability space where the martingale takes values

is a cartesian product of ∆ copies of Ω, thus we can bound supx,x′∈Ω∆ |g(x)− g(x′)|2 with ∆c2i �.
Using equation (90) we can extend the previous theorem to the case where Y is a linear stationary

process of the form
Y = Y0 ∗ h ,

where Y0 is a white process with finite energy and h is a compact support filter.
Similarly, introducing redundancy in the scattering becomes harmless in light of (90), since adding

an oversampling of δ increases n to nδ but reduces ci to ci/δ, resulting in the same variance bound.

B.3 Proof of Proposition 4.6
If X is such that SJX is mean square consistent, then the process Xj = |X ? ψj | also yields a mean
square consistent scattering representation, since for each J∑

p∈PJ
E(|SJ [p]Xj − SXj(p)|2) =

∑
p∈PJ

E(|SJ [j + p]X − SX(j + p)|2)

≤
∑
p∈PJ

E(|SJ [p]X − SX(p)|2) ,

which implies that limJ→∞ E(‖SJ [PJ ]Xj − SXj‖2) = 0. As a result,

E(|X ? ψj |2) =
∑
p∈P∞

|SXj(p)|2 =
∑
p∈P∞

|SX(j + p)|2 . (91)

�.
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